浙江省科技型企业---加速您的多肽研究
首页 >多肽产品 >七肽ALPMHIR

多肽产品

132160-04-4,七肽ALPMHIR,H2N-Ala-Leu-Pro-Met-His-Ile-Arg-COOH,H2N-ALPMHIR-OH,杭州专肽生物的产品

七肽ALPMHIR

乳激酶ALPMHIR是一种血管紧张素转换酶(ACE)抑制肽

编号:182632

CAS号:132160-04-4

单字母:H2N-ALPMHIR-OH

纠错
  • 编号:182632
    中文名称:七肽ALPMHIR
    英文名:β-Lactoglobulin (142-148) (bovine, goat, ovine)
    CAS号:132160-04-4
    单字母:H2N-ALPMHIR-OH
    三字母:H2N

    N端氨基:N-terminal amino group。在肽或多肽链中含有游离a-氨基的氨基酸一端。在表示氨基酸序列时,通常将N端放在肽链的左边。

    -Ala

    丙氨酸:alanine。L-丙氨酸的系统命名为(2S)-氨基丙酸,是编码氨基酸,也叫L-α-丙氨酸。符号:A,Ala。D-丙氨酸存在于多种细菌细胞壁的糖肽中。β-丙氨酸是维生素泛酸和辅酶A的组分。

    -Leu

    L-亮氨酸:leucine。系统命名为(2S)-氨基-4-甲基戊酸。是编码氨基酸。是哺乳动物的必需氨基酸。符号:L,Leu。

    -Pro

    L-脯氨酸:proline。系统命名为吡咯烷-(2S)-羧酸。为亚氨基酸。是编码氨基酸。在肽链中有特殊作用,如易形成顺式的肽键等。符号:P,Pro。

    -Met

    L-甲硫氨酸:methionine又称“蛋氨酸”。系统命名为(2S)-氨基-4-甲硫基丁酸。是编码氨基酸。是哺乳动物的必需氨基酸。符号:M,Met。

    -His

    L-组氨酸:histidine。系统命名为(2S)-氨基-3-(4-咪唑基)丙酸。其侧链带有弱碱性的咪唑基,为编码氨基酸。是幼小哺乳动物的必需氨基酸。符号:H,His。

    -Ile

    L-异亮氨酸:isoleucine。系统命名为(2S)-氨基-(3R)-甲基戊酸。是编码氨基酸。有两个手性碳原子,是哺乳动物的必需氨基酸。符号:I,Ile。

    -Arg

    L-精氨酸:arginine。系统命名为(2S)-氨基-5-胍基戊酸。在生理条件下带正电荷,为编码氨基酸。是幼小哺乳动物的必需氨基酸。符号:R,Arg。

    -OH

    C端羧基:C-terminal carboxyl group。在肽或多肽链中含有游离羧基的氨基酸一端。在表示氨基酸序列时,通常将C端放在肽链的右边。

    氨基酸个数:7
    分子式:C37H64N12O8S1
    平均分子量:837.04
    精确分子量:836.47
    等电点(PI):-
    pH=7.0时的净电荷数:2.21
    平均亲水性:-0.48333333333333
    疏水性值:0.39
    消光系数:-
    来源:人工化学合成,仅限科学研究使用,不得用于人体。
    储存条件:负80℃至负20℃
    标签:未分类肽   

  • The lactokinin ALPMHIR is an angiotensin-converting enzyme (ACE) inhibitory peptide, which corresponds to a sequence released by tryptic digestion from the milk protein β-lactoglobulin. It might be useful in the treatment of hypertension although its ACE inhibitory activity is about a 100 times lower than that of the antihypertensive drug captopril.

    Peptide H-ALPMHIR-OH is a Research Peptide with significant interest within the field academic and medical research. Recent citations using H-ALPMHIR-OH include the following: Separation and identification of ACE inhibitory peptides from defatted walnut meal Y Chen, J Li, N Dong, Y Zhang, X Lu, Y Hao - European Food Research , 2020 - Springerhttps://link.springer.com/article/10.1007/s00217-020-03553-5 Novel ACE inhibitory peptides derived from whey protein hydrolysates: Identification and molecular docking analysis X Li, C Feng, H Hong , Y Zhang , Z Luo, Q Wang, Y Luo - Food Bioscience, 2022 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S2212429222001961 Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells W Maes, J Van Camp, V Vermeirssen , M Hemeryck - Regulatory peptides, 2004 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0167011503002970 Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes T Tavares, M del Mar Contreras , M Amorim , M Pintado - Peptides, 2011 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S019697811100074X A novel LC-MS application to investigate oxidation of peptides isolated from beta-lactoglobulin T Koivumaeki, G GuÃ\x8cË\x86rbuÃ\x8cË\x86z, M Poutanen - Journal of agricultural , 2012 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/jf300360c Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from the protein hydrolysate of Mytilus edulis: Isolation, identification, molecular docking SK Suo, YQ Zhao, YM Wang, XY Pan, CF Chi - Food & Function, 2022 - pubs.rsc.orghttps://pubs.rsc.org/en/content/articlehtml/2022/fo/d2fo00275b In silico analysis and molecular docking study of angiotensin I-converting enzyme inhibitory peptides from smooth-hound viscera protein hydrolysates fractionated by O Abdelhedi, R Nasri , L Mora, M Jridi , F Toldra , M Nasri - Food chemistry, 2018 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S030881461731097X A flounder fish peptide shows anti-hypertensive effects by suppressing the renin-angiotensin-aldosterone system and Endothelin-1 M Rahmdel, SM Cho, YJ Jeon - Protein and Peptide , 2021 - ingentaconnect.comhttps://www.ingentaconnect.com/content/ben/ppl/2021/00000028/00000007/art00012 Formation of peptide layers and adsorption mechanisms on a negatively charged cation-exchange membrane M Persico, S Mikhaylin , A Doyen , L Firdaous - Journal of colloid and , 2017 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0021979717309347 Fouling prevention of peptides from a tryptic whey hydrolysate during electromembrane processes by use of monovalent ion permselective membranes M Persico, L Bazinet - Journal of membrane science, 2018 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0376738817327916 Semi-Industrial Production of a DPP-IV and ACE Inhibitory Peptide Fraction from Whey Protein Concentrate Hydrolysate by Electrodialysis with Ultrafiltration M Faucher, TR Geoffroy , J Thibodeau, S Gaaloul - Membranes, 2022 - mdpi.comhttps://www.mdpi.com/2077-0375/12/4/409 Reactivity of peptides within the food matrix JP Kamdem , A Tsopmo - Journal of food Biochemistry, 2019 - Wiley Online Libraryhttps://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.12489 Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates I Ferreira, O Pinho, MV Mota, P Tavares - International Dairy , 2007 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S095869460600166X In Silico Strategies to Predict Anti-aging Features of Whey Peptides GR Rama, LF Saraiva Macedo Timmers - Molecular , 2023 - Springerhttps://link.springer.com/article/10.1007/s12033-023-00887-9 LC-MS investigations on interactions between isolated beta-lactoglobulin peptides and lipid oxidation product malondialdehyde G Gurbuz, M Heinonen - Food Chemistry, 2015 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0308814614018925 Production and membrane fractionation of bioactive peptides from a whey protein concentrate F Arrutia , R Rubio, FA Riera - Journal of Food Engineering, 2016 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0260877416300863 Side Chain Cleavage in TEMPO-assisted Free Radical Initiated Peptide Sequencing (FRIPS): Amino Acid Composition Information# CS Lee, I Jang, S Hwangbo, B Moon - Bulletin of the Korean , 2015 - Wiley Online Libraryhttps://onlinelibrary.wiley.com/doi/abs/10.1002/bkcs.10150 Protein-Phenolic Interaction of Tryptic Digests of beta-Lactoglobulin and Cloudberry Ellagitannin B Wang, T Koivumaki, P Kylli, M Heinonen - Journal of agricultural , 2014 - ACS Publicationshttps://pubs.acs.org/doi/abs/10.1021/jf501190x Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis B acaâ\x80¡akÃ\x84±r , B Okuyan, G Ã\x85ÅŸener , T Tunali-Akbay - European Journal of , 2021 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0014299920308736 Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme AS Pina , ACA Roque - Journal of Molecular Recognition: An , 2009 - Wiley Online Libraryhttps://onlinelibrary.wiley.com/doi/abs/10.1002/jmr.905 Discordance between in silico & in vitro analyses of ACE inhibitory & antioxidative peptides from mixed milk tryptic whey protein hydrolysate A Chatterjee, SK Kanawjia, Y Khetra , P Saini - Journal of food science and , 2015 - Springerhttps://link.springer.com/article/10.1007/s13197-014-1669-z

  • DOI名称
    10.1016/j.regpep.2003.11.005Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells下载
  • 多肽H2N-Ala-Leu-Pro-Met-His-Ile-Arg-COOH的合成步骤:

    1、合成CTC树脂:称取2.17g CTC Resin(如初始取代度约为0.64mmol/g)和1.67mmol Fmoc-Arg(Pbf)-OH于反应器中,加入适量DCM溶解氨基酸(需要注意,此时CTC树脂体积会增大好几倍,避免DCM溶液过少),再加入4.17mmol DIPEA(Mw:129.1,d:0.740g/ml),反应2-3小时后,可不抽滤溶液,直接加入1ml的HPLC级甲醇,封端半小时。依次用DMF洗涤2次,甲醇洗涤1次,DCM洗涤一次,甲醇洗涤一次,DCM洗涤一次,DMF洗涤2次(这里使用甲醇和DCM交替洗涤,是为了更好地去除其他溶质,有利于后续反应)。得到  Fmoc-Arg(Pbf)-CTC Resin。结构图如下:

    2、脱Fmoc:加3倍树脂体积的20%Pip/DMF溶液,鼓氮气30分钟,然后2倍树脂体积的DMF 洗涤5次。得到 H2N-Arg(Pbf)-CTC Resin 。(此步骤脱除Fmoc基团,茚三酮检测为蓝色,Pip为哌啶)。结构图如下:

    3、缩合:取4.17mmol Fmoc-Ile-OH 氨基酸,加入到上述树脂里,加适当DMF溶解氨基酸,再依次加入8.33mmol DIPEA,3.96mmol HBTU。反应30分钟后,取小样洗涤,茚三酮检测为无色。用2倍树脂体积的DMF 洗涤3次树脂。(洗涤树脂,去掉残留溶剂,为下一步反应做准备)。得到Fmoc-Ile-Arg(Pbf)-CTC Resin。氨基酸:DIPEA:HBTU:树脂=3:6:2.85:1(摩尔比)。结构图如下:

    4、依次循环步骤二、步骤三,依次得到

    H2N-Ile-Arg(Pbf)-CTC Resin

    Fmoc-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    H2N-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    Fmoc-Met-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    H2N-Met-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    Fmoc-Pro-Met-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    H2N-Pro-Met-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    Fmoc-Leu-Pro-Met-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    H2N-Leu-Pro-Met-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    Fmoc-Ala-Leu-Pro-Met-His(Trt)-Ile-Arg(Pbf)-CTC Resin

    以上中间结构,均可在专肽生物多肽计算器-多肽结构计算器中,一键画出。

    最后再经过步骤二得到 H2N-Ala-Leu-Pro-Met-His(Trt)-Ile-Arg(Pbf)-CTC Resin,结构如下:

    5、切割:6倍树脂体积的切割液(或每1g树脂加8ml左右的切割液),摇床摇晃 2小时,过滤掉树脂,用冰无水乙醚沉淀滤液,并用冰无水乙醚洗涤沉淀物3次,最后将沉淀物放真空干燥釜中,常温干燥24小试,得到粗品H2N-Ala-Leu-Pro-Met-His-Ile-Arg-COOH。结构图见产品结构图。

    切割液选择:1)TFA:H2O=95%:5%、TFA:H2O=97.5%:2.5%

    2)TFA:H2O:TIS=95%:2.5%:2.5%

    3)三氟乙酸:茴香硫醚:1,2-乙二硫醇:苯酚:水=87.5%:5%:2.5%:2.5%:2.5%

    (前两种适合没有容易氧化的氨基酸,例如Trp、Cys、Met。第三种适合几乎所有的序列。)

    6、纯化冻干:使用液相色谱纯化,收集目标峰液体,进行冻干,获得蓬松的粉末状固体多肽。不过这时要取小样复测下纯度 是否目标纯度。

    7、最后总结:

    杭州专肽生物技术有限公司(ALLPEPTIDE https://www.allpeptide.com)主营定制多肽合成业务,提供各类长肽,短肽,环肽,提供各类修饰肽,如:荧光标记修饰(CY3、CY5、CY5.5、CY7、FAM、FITC、Rhodamine B、TAMRA等),功能基团修饰肽(叠氮、炔基、DBCO、DOTA、NOTA等),同位素标记肽(N15、C13),订书肽(Stapled Peptide),脂肪酸修饰肽(Pal、Myr、Ste),磷酸化修饰肽(P-Ser、P-Thr、P-Tyr),环肽(酰胺键环肽、一对或者多对二硫键环),生物素标记肽,PEG修饰肽,甲基化修饰肽

    以上所有内容,为专肽生物原创内容,请勿发布到其他网站上。

  • 暂时没有数据