浙江省科技型企业---加速您的多肽研究
首页 >多肽产品 >[DAla2]Deltorphin C

多肽产品

122752-15-2,七肽Y-DAla-FDVVG-NH2,H2N-Tyr-DAla-Phe-Asp-Val-Val-Gly-NH2,H2N-Y-DAla-FDVVG-NH2,杭州专肽生物的产品

[DAla2]Deltorphin C

δ-酪啡肽C,一种从双色叶猴皮肤中分离出的选择性δ-阿片受体激动剂。

编号:121059

CAS号:122752-15-2

单字母:H2N-YaFDVVG-CONH2

纠错
  • 编号:121059
    中文名称:[DAla2]Deltorphin C
    英文名:[DAla2]Deltorphin C
    CAS号:122752-15-2
    单字母:H2N-YaFDVVG-CONH2
    三字母:H2N

    N端氨基:N-terminal amino group。在肽或多肽链中含有游离a-氨基的氨基酸一端。在表示氨基酸序列时,通常将N端放在肽链的左边。

    -Tyr

    L-酪氨酸:tyrosine。系统命名为(2S)-氨基-3-(4-羟基苯基)丙酸。是编码氨基酸。符号:Y,Tyr。

    -DAla

    D型丙氨酸

    -Phe

    L-苯丙氨酸:phenylalanine。系统命名为(2S)-氨基-3-苯基丙酸。是编码氨基酸。是哺乳动物的必需氨基酸。符号:F,Phe。

    -Asp

    L-天冬氨酸:aspartic acid。系统命名为(2S)-氨基-丁二酸。是编码氨基酸,又是神经递质。符号:D,Asp。D-天冬氨酸存在于多种细菌的细胞壁和短杆菌肽A中。

    -Val

    L-缬氨酸:valine。系统命名为(2S)-氨基-3-甲基丁酸。是编码氨基酸。是哺乳动物的必需氨基酸。符号:V,Val。在某些放线菌素如缬霉素中存在 D-缬氨酸。

    -Val

    L-缬氨酸:valine。系统命名为(2S)-氨基-3-甲基丁酸。是编码氨基酸。是哺乳动物的必需氨基酸。符号:V,Val。在某些放线菌素如缬霉素中存在 D-缬氨酸。

    -Gly

    甘氨酸:glycine。系统命名为 2-氨基乙酸。是编码氨基酸中没有旋光性的最简单的氨基酸,因具有甜味而得名。符号:G,Gly。

    -CONH2

    C端酰胺化

    氨基酸个数:7
    分子式:C37H52N8O10
    平均分子量:768.86
    精确分子量:768.38
    等电点(PI):9.36
    pH=7.0时的净电荷数:0.97
    碱性基团个数:疏水
    平均亲水性:-1.0666666666667
    疏水性值:1.17
    外观与性状:白色粉末状固体
    消光系数:1490
    来源:人工化学合成,仅限科学研究使用,不得用于人体。
    纯度:95%、98%
    盐体系:可选TFA、HAc、HCl或其它
    储存条件:负80℃至负20℃
    标签:强啡肽(Dynorphin)    D型氨基酸肽    激动剂多肽(Agonist Peptide)   

  • δ-酪啡肽C,一种从双色叶猴皮肤中分离出的选择性δ-阿片受体激动剂。

    Deltorphin C, a selective δ-opioid receptor agonist isolated from the skin of Phyllomedusa bicolor.

    从双色叶猴(Phyllomedusa Bicolor)皮肤中分离出的选择性δ阿片受体激动剂。

    Selective delta-opoid receptor agonist isolated from the skin of Phyllomedusa Bicolor.

    强啡肽的定义

    强啡肽是一类内源性阿片肽,在大脑的许多不同部位产生,包括下丘脑、海马和脊髓,根据产生部位的不同,具有许多不同的生理作用。

    Dynorphins are a class of endogenous opioid peptides produced in many different parts of the brain, including the hypothalamus, the hippocampus and the spinal cord, and have many different physiological actions, depending upon the site of production.

    强啡肽的相关多肽

    Dynorphins来源于前体蛋白proynorphin。当前强啡肽在加工过程中被前蛋白转化酶2(PC2)切割时,会释放出多种活性肽:强啡肽A、强啡肽B、“大强啡肽”和A/β-新强啡肽1。

    Dynorphins arise from the precursor protein prodynorphin. When prodynorphin is cleaved during processing by proprotein convertase 2 (PC2), multiple active peptides are released: dynorphin A, dynorphin B, “big dynorphin” and a/ß-neo-endorphin【1】.

    强啡肽的发现 

    Dynophin于20世纪70年代中期在阿片受体和内源性阿片肽领域最重要的研究人员之一Avram Goldstein的实验室中被发现。Goldstein与日本生物化学家Shinro Tachibana合作进行了分子鉴定,以进行纯化,M.Hunkapiller和L.Hood进行了微测序。

    Dynophin was discovered in the mid 1970's in the laboratory of Avram Goldstein, one of the most important researchers in the field of opioid receptors and endogenous opioid peptides. The molecular identification was achieved by Goldstein in collaboration with the Japanese biochemist, Shinro Tachibana for purification, and M. Hunkapiller and L. Hood, who performed the microsequencing.

    强啡肽的结构特点

    从猪垂体中分离出一种4000道尔顿的强啡肽(也称为“大强啡肽”)。它有32个氨基酸,氨基末端有一个称为强啡肽a的十七肽(17个氨基酸序列),羧基末端有一种相关的十三肽(13个氨基酸序列,强啡肽B)。这两种肽由“处理信号”Lys-Arg【2】分离。

    A 4,000-dalton dynorphin (also called the “Big dynorphin”) was isolated from porcine pituitary. It has 32 amino acids, with a heptadecapeptide (17 amino acid sequence), called dynorphin A, at its amino terminus and a related tridecapeptide (13 amino acid sequence), dynorphin B, at its carboxyl terminus. The two peptides are separated by the "processing signal" Lys-Arg【2】.  

    强啡肽的作用机制

    Dynorphins主要通过一种名为?的G蛋白偶联受体发挥作用?-阿片受体(KOR)【3】。尽管KOR是所有强啡肽的主要受体,但这些肽确实对µ-阿片受体(MOR)、d-阿片受体、N-甲基-d-天冬氨酸(NMDA)型谷氨酸受体和缓激肽受体有一定的亲和力。不同的强啡肽在受体上表现出不同的受体选择性和效力。强啡肽和强啡肽A都比强啡肽B更有效、更具选择性。强啡肽通过与多巴胺神经末梢上的KOR结合来减少多巴胺的释放,从而导致药物耐受和戒断症状。

    Dynorphins primarily exert their effects through a G-protein coupled receptor called the ?-opioid receptor (KOR)【3】 Although KOR is the primary receptor for all dynorphins, the peptides do have some affinity for the µ-opioid receptor (MOR), d-opioid receptor (DOR), N-methyl-D-aspartic acid (NMDA)-type glutamate receptor, and bradykinin receptor. Different dynorphins show different receptor selectivities and potencies at receptors. Both big dynorphin and dynorphin A are more potent and more selective than dynorphin B. Dynorphin decreases dopamine release by binding to KORs on dopamine nerve terminals, which leads to drug tolerance and withdrawal symptoms.

    强啡肽的功能

    Dynorphins调节疼痛反应。它们可以显著抑制吗啡或β-内啡肽诱导的镇痛作用【4】。Dynorphins抑制多巴胺的释放,这会抵消可卡因的愉悦作用【5】。它们通过控制食欲和昼夜节律来维持体内平衡【6】。除了在控制体重方面的作用外,还发现强啡肽可以调节体温【7】。

    Dynorphins modulate pain response. They can significantly inhibit morphine- or beta-endorphin-induced analgesia【4】. Dynorphins inhibit dopamine release that would counter the pleasurable effects of cocaine【5】.  They are important in maintaining homeostasis through appetite control and circadian rhythms【6】. In addition to their role in weight control, dynorphins have also been found to regulate body temperature【7】.

    References

    1.     Day, R., Lazure, C., Basak, A., Boudreault, A., Limperis, P., Dong, W., et al. (1998). Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J Biol. Chem., 273(2), 829-836.

    2.     W Fischli, A Goldstein, M W Hunkapiller, and L E Hood (1982). Isolation and amino acid sequence   analysis of a 4,000-dalton dynorphin from porcine pituitary. PNAS, 79 (17), 5435-5437.

    3.     Nyberg, F. & Hallburg, M. (2007). Neuropeptides in hyperthermia. Progress in brain research,  162:277-93.

    4.     FC Tulunay, MF Jen, JK Chang, HH Loh and NM Lee, (1981). Possible regulatory role of dynorphin on morphine- and beta-endorphin- induced analgesia. American Society for Pharmacology and Experimental Therapeutics, 219 (2), 296-298.

    5.     Clavin, W. (2005). Dynorphin: Nature’s Own Antidote to Cocaine (and Pleasure?).

    6.     Przewlocki, R., Lason, W., Konecka, A. M., Gramsch, C., Herz, A., & Reid, L. D. (1983). The opioid peptide dynorphin, circadian rhythms, and starvation. Science, 219(4580), 71-73.

    7.     Xin, L., Geller, E. B., & Adler, M. W. (1997). Body temperature and analgesic effects of selective mu and kappa opioid receptor agonists microdialyzed into rat brain. Journal of Pharmacology and Experimental Therapeutics, 281(1), 499-507.

    很多蛋白在细胞中非常容易被降解,或被标记,进而被选择性地破坏。但含有部分D型氨基酸的多肽则显示了很强的抵抗蛋白酶降解能力。

  • DOI名称
    10.1186/1471-2202-6-21Functional modulation of human delta opioid receptor by neuropeptide FF下载
    10.1016/j.cell.2005.09.011A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription下载
    10.1016/0014-2999(91)90536-yStructure-activity relationships of the delta-opioid-selective agonists, deltorphins下载
    10.1021/jm00108a017Function of negative charge in the "address domain" of deltorphins下载
    10.1021/jm00109a019Synthesis and structure-activity relationships of deltorphin analogues下载
    10.1073/pnas.86.13.5188Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites下载
  • 多肽H2N-Tyr-DAla-Phe-Asp-Val-Val-Gly-NH2的合成步骤:

    1、合成MBHA树脂:取若干克的MBHA树脂(如初始取代度为0.5mmol/g)和1倍树脂摩尔量的Fmoc-Linker-OH加入到反应器中,加入DMF,搅拌使氨基酸完全溶解。再加入树脂2倍量的DIEPA,搅拌混合均匀。再加入树脂0.95倍量的HBTU,搅拌混合均匀。反应3-4小时后,用DMF洗涤3次。用2倍树脂体积的10%乙酸酐/DMF 进行封端30分钟。然后再用DMF洗涤3次,甲醇洗涤2次,DCM洗涤2次,再用甲醇洗涤2次。真空干燥12小时以上,得到干燥的树脂{Fmoc-Linker-MHBA Resin},测定取代度。这里测得取代度为 0.3mmol/g。结构如下图:

    2、脱Fmoc:取2.47g的上述树脂,用DCM或DMF溶胀20分钟。用DMF洗涤2遍。加3倍树脂体积的20%Pip/DMF溶液,鼓氮气30分钟,然后2倍树脂体积的DMF 洗涤5次。得到 H2N-Linker-MBHA Resin 。(此步骤脱除Fmoc基团,茚三酮检测为蓝色,Pip为哌啶)。结构图如下:

    3、缩合:取2.22mmol Fmoc-Gly-OH 氨基酸,加入到上述树脂里,加适当DMF溶解氨基酸,再依次加入4.45mmol DIPEA,2.11mmol HBTU。反应30分钟后,取小样洗涤,茚三酮检测为无色。用2倍树脂体积的DMF 洗涤3次树脂。(洗涤树脂,去掉残留溶剂,为下一步反应做准备)。得到Fmoc-Gly-Linker-MBHA Resin。氨基酸:DIPEA:HBTU:树脂=3:6:2.85:1(摩尔比)。结构图如下:

    4、依次循环步骤二、步骤三,依次得到

    H2N-Gly-Linker-MBHA Resin

    Fmoc-Val-Gly-Linker-MBHA Resin

    H2N-Val-Gly-Linker-MBHA Resin

    Fmoc-Val-Val-Gly-Linker-MBHA Resin

    H2N-Val-Val-Gly-Linker-MBHA Resin

    Fmoc-Asp(OtBu)-Val-Val-Gly-Linker-MBHA Resin

    H2N-Asp(OtBu)-Val-Val-Gly-Linker-MBHA Resin

    Fmoc-Phe-Asp(OtBu)-Val-Val-Gly-Linker-MBHA Resin

    H2N-Phe-Asp(OtBu)-Val-Val-Gly-Linker-MBHA Resin

    Fmoc-DAla-Phe-Asp(OtBu)-Val-Val-Gly-Linker-MBHA Resin

    H2N-DAla-Phe-Asp(OtBu)-Val-Val-Gly-Linker-MBHA Resin

    Fmoc-Tyr(tBu)-DAla-Phe-Asp(OtBu)-Val-Val-Gly-Linker-MBHA Resin

    以上中间结构,均可在专肽生物多肽计算器-多肽结构计算器中,一键画出。

    最后再经过步骤二得到 H2N-Tyr(tBu)-DAla-Phe-Asp(OtBu)-Val-Val-Gly-Linker-MBHA Resin,结构如下:

    5、切割:6倍树脂体积的切割液(或每1g树脂加8ml左右的切割液),摇床摇晃 2小时,过滤掉树脂,用冰无水乙醚沉淀滤液,并用冰无水乙醚洗涤沉淀物3次,最后将沉淀物放真空干燥釜中,常温干燥24小试,得到粗品H2N-Tyr-DAla-Phe-Asp-Val-Val-Gly-NH2。结构图见产品结构图。

    切割液选择:1)TFA:H2O=95%:5%

    2)TFA:H2O:TIS=95%:2.5%:2.5%

    3)三氟乙酸:茴香硫醚:1,2-乙二硫醇:苯酚:水=87.5%:5%:2.5%:2.5%:2.5%

    (前两种适合没有容易氧化的氨基酸,例如Trp、Cys、Met。第三种适合几乎所有的序列。)

    6、纯化冻干:使用液相色谱纯化,收集目标峰液体,进行冻干,获得蓬松的粉末状固体多肽。不过这时要取小样复测下纯度 是否目标纯度。

    7、最后总结:

    杭州专肽生物技术有限公司(ALLPEPTIDE https://www.allpeptide.com)主营定制多肽合成业务,提供各类长肽,短肽,环肽,提供各类修饰肽,如:荧光标记修饰(CY3、CY5、CY5.5、CY7、FAM、FITC、Rhodamine B、TAMRA等),功能基团修饰肽(叠氮、炔基、DBCO、DOTA、NOTA等),同位素标记肽(N15、C13),订书肽(Stapled Peptide),脂肪酸修饰肽(Pal、Myr、Ste),磷酸化修饰肽(P-Ser、P-Thr、P-Tyr),环肽(酰胺键环肽、一对或者多对二硫键环),生物素标记肽,PEG修饰肽,甲基化修饰肽

    以上所有内容,为专肽生物原创内容,请勿发布到其他网站上。

  • 暂时没有数据