DBCO(二苯并环辛炔)试剂是用于应变促进的炔叠氮化物环加成(SPAAC)的最具反应性的环炔之一,可实现无铜点击化学。专肽生物优势供应DBCO修饰的多肽。
通常利用多肽中的氨基,巯基或羧基,把DBCO连接到多肽上,
1、使用DBCO-NHS和多肽中的氨基反应。
DBCO-NHS酯是一种与胺反应的化合物,可用于修饰有机溶剂中的含胺分子(在水性介质中的溶解度有限)。它与伯胺(例如赖氨酸残基的侧链或氨基硅烷涂层的表面)在中性或弱碱性pH下反应形成共价键。低质量重量将为修饰的分子添加最少的间隔基。DBCO通常用于无铜点击化学反应。
DBCO-C6-NHS酯是一种胺反应性化合物,可用于修饰有机介质中的含胺分子。该试剂不溶于水介质。扩展的6个碳原子间隔臂提高了在常用有机溶剂(包括二氯甲烷,氯仿,THF和乙酸乙酯)中的溶解度,并且还提高了衍生化效率和结合物的稳定性。DBCO通常用于无铜点击化学反应。
DBCO-PEG1-NHS酯是一种含有NHS酯部分的PEG衍生物,可以在中性或弱碱性条件下与伯胺(例如赖氨酸残基的侧链或氨基硅烷涂覆的表面)特异性且有效地反应形成共价键。亲水性PEG间隔臂提高了水溶性,并提供了长而灵活的连接,可最大程度减少与连接有关的位阻。DBCO通常用于无铜点击化学反应。
2、使用DBCO-马来酰亚胺和多肽中的巯基反应。
DBCO-马来酰亚胺是含有马来酰亚胺基团和DBCO部分的巯基反应试剂。马来酰亚胺基团特异性且有效地与硫醇反应形成硫醚键。低质量的重量将为修饰的分子增加最少的间隔,并使DBCO部分简单有效地掺入含半胱氨酸的肽或其他含巯基的生物分子中。DBCO通常用于无铜点击化学反应。
DBCO-PEG4-马来酰亚胺是含有马来酰亚胺基团和DBCO部分的PEG衍生物。亲水性PEG间隔臂可改善在水性缓冲液中的溶解度。马来酰亚胺基团特异性且有效地与硫醇反应形成稳定的硫醚键。较低的质量重量将为修饰的分子增加最少的间隔,并使DBCO部分简单有效地结合到含半胱氨酸的肽或其他含巯基的生物分子上。DBCO通常用于无铜点击化学反应。
3、使用DBCO-NH2和多肽中的巯基反应。
DBCO-PEG1-胺是包含DBCO和胺部分的PEG衍生物。DBCO基团通常用于无铜点击化学反应中。胺基可与羧酸,活化的NHS酯,羰基(酮,醛)等反应。
DBCO-NHCO-PEG4-胺是具有延长的PEG间隔臂的羧基反应性结构单元。亲水性PEG间隔臂可改善水溶性。在存在活化剂(例如EDC或DCC)的情况下,该试剂可用于通过稳定的酰胺键衍生化羧基或活化的酯(例如NHS酯)。DBCO通常用于无铜点击化学反应。
磺基DBCO-PEG4-胺是具有扩展的PEG间隔臂的水溶性羧基反应性结构单元。在存在活化剂(例如EDC或DCC)的情况下,该试剂可用于通过稳定的酰胺键衍生化羧基或活化的酯(例如NHS酯)。亲水的磺化间隔臂可大大改善DBCO衍生分子的水溶性,并提供长久且灵活的连接。DBCO通常用于无铜点击化学反应。
最后介绍一下DBCO和叠氮PEG的连接步骤。
To a solution of A (25 mg, 78.3 Gmol) in 0.1 mL of EtOH/H2O (3:2) was added a solution of B (20 mg, 78.3 Gmol) in 0.1 mL of EtOH/H2O (3:2). The reaction mixture was stirred for 60 min at room temperature. The aqueous layer was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were then dried over MgSO4 and concentrated under reduced pressure. The residue was then purified by flash column chromatography (CH2Cl2/methanol, 9:1) to obtain C, both isomers of the triazole were collected and treated as one compound. Yield (35 mg, 78%).
To a solution of A (0.32 mg, 1.0 Gmol) in 0.1 mL of EtOH/H2O (3:2) was added a solution of [18F]B (481 MBq) in 0.1 mL of EtOH/H2O (1:1). The reaction mixture was stirred for 15 min at room temperature. The reaction was monitored by radio-TLC. The crude compound was injected onto reverse-phase HPLC and purified. The desired compound [18F]C was collected from HPLC (tR = 12.9 min; C 18 silica gel, 10 Gm, 10 × 250 mm; 0.1% TFA in H2O/acetonitrile = 30:70 (v/v); 254 nm; 2 mL/min). The total synthesis time of [18F]3 was 35 min, and the decaycorrected radiochemical with > 98% radiochemical purity. Both isomers of the triazole were collected and treated as one compound. Specific activity was estimated by comparing UV peak intensity of the purified [18F]-labeled compound with reference non-radioactive compounds of known concentrations. The specific activity of [18F]3 (42 GBq/Gmol) was obtained after purification on the HPLC column. Yield 93%.