编号:432985
CAS号:1061556-49-7
单字母:H2N-AFCNLR-Dab-CQLSCRSLGLLGKCIGDKCECVKH-CONH2(Disulfide Bridge:C3-C21 & C8-C26 & C12-C28)
编号: | 432985 |
中文名称: | (Dab7)-Leiurotoxin I |
英文名: | (Dab7)-LeTx I, (Dab7)-Scyllatoxin |
CAS号: | 1061556-49-7 |
单字母: | H2N-AFCNLR-Dab-CQLSCRSLGLLGKCIGDKCECVKH-CONH2(Disulfide Bridge:C3-C21 & C8-C26 & C12-C28) |
三字母: | H2N-Ala-Phe-Cys-Asn-Leu-Arg-Dab-Cys-Gln-Leu-Ser-Cys-Arg-Ser-Leu-Gly-Leu-Leu-Gly-Lys-Cys-Ile-Gly-Asp-Lys-Cys-Glu-Cys-Val-Lys-His-CONH2(Disulfide Bridge:Cys3-Cys21 & Cys8-Cys26 & Cys12-Cys28) |
氨基酸个数: | 31 |
分子式: | C141H236N46O39S6 |
平均分子量: | 3392.06 |
精确分子量: | 3389.62 |
等电点(PI): | 11.76 |
pH=7.0时的净电荷数: | 10.02 |
平均亲水性: | 0.0074074074074074 |
疏水性值: | 0.22 |
消光系数: | - |
标签: | 二硫键环肽 氨基酸衍生物肽 |
Discovery
Chicchi et al., in 1988 purified an inhibitor of apamin binding to homogeneity in three chromatographic steps from the venom of the scorpion, Leiurus quinquestriatus hebraeus. The inhibitor was named leiurotoxin I, represents less than 0.02% of the venom protein. It is a 3.4-kDa peptide with little structural homology to apamin although it has some homology to other scorpion toxins such as charybdotoxin, noxiustoxin, and neurotoxin P2 1.
Structural Characteristics
All scorpion toxins are disulphide-containing peptide neurotoxins, with three disulphide bonds in "short" and four in "long" neurotoxins. All scorpion venom toxins have a distinct structural motif, with a dense core of secondary structural elements comprising disulphide bonds stabilizing the structure 2. Leiurotoxin is 31-residue polypeptide chain reticulated by three disulfide bridges, i.e. Cys3-Cys21, Cys8-Cys26 and Cys12-Cys28. A proton NMR study at 500 MHz of leiurotoxin I in water was initially carried out to elucidate the secondary structure of toxin. Protein is formed by a helix and a double-stranded beta-sheet and stabilized by three disulfide bridges 4.
Mode of Action
A distinct class of small-conductance Ca2+-activated K+ channel is blocked by leiurotoxin-1. Leiurotoxin I completely inhibits 125I-apamin binding to rat brain synaptosomal membranes (Ki = 75 pM). Thus, it is 10-20-fold less potent than apamin. Leiurotoxin I is not a strictly competitive inhibitor of this binding reaction. Like apamin, leiurotoxin I blocks the epinephrine-induced relaxation of guinea pig teniae coli (ED50 = 6.5 nM), while having no effect on the rate or force of contraction in guinea pig atria or rabbit portal vein preparations. Leiurotoxin I of scorpion venom and apamin of honeybee venom demonstrate similar activities in a variety of tissues, but are structurally unrelated peptides. Leiurotoxin is useful in elucidating the role of the small conductance, Ca2+-activated K+ channels in different tissues 6.
The role and toxicity of these disulfides were analysed, analogs of Lei-NH2 lacking one disulfide bridge were chemically synthesized by selective replacement of each pair of half-cystines forming a bridge by two a-aminobutyrate (Abu) residues. The synthetic peptides were tested in vitro for their capacity to compete with the binding of [125I] apamin to rat brain synaptosomes and in vivo for their neurotoxicity in mice. It was found that disulfide bridge Cys3-Cys21 is not essential per se for high toxin activity. Structural models of the analogs were constructed on the basis of the disulfide pairing assignment and compared with that of Lei-NH 5.
Functions
Leiurotoxin blocks the apamin-sensitive K+ channel in guinea pig hepatocytes7- a potent inhibitor of apamin binding to rat brain synaptosomal membranes. This peptide, like apamin, blocks the epinephrine-induced relaxation of guinea pig. Leiurotoxin I is a mixed-type inhibitor of apamin binding to rat brain synaptosomal membranes since it increases the apparent KO for lZ5I-apamin binding and reduces the number of binding sites. The similarity in the activities of leiurotoxin I and apamin in the guinea pig teniae coli assay indicates that, like apamin, leiurotoxin I acts as a blocker of a Ca2+- activated K+ channel 1. Only two native disulfide bonds in leiurotoxin I are sufficient to preserve a native like and active conformation. Thus, in the scorpion toxin scaffold, modifications of conserved and interior cysteine residues may permit modulation of function, without significantly affecting folding efficiency and structure 6.
Although molecular biology approaches have been employed to identify and characterize several species of voltagegated K+ channels, toxins directed against a particular channel can still be useful in defining the physiological role of that channel in a particular tissue. In addition, for those K+ channels which are not yet successfully probed by molecular biology techniques, toxins can be used as biochemical tools with which to purify the target protein of interest 6.
References
1. Chicchi GG, Gimenez-Gallego G, Ber E, Garcia ML, Winquist R, Cascieri MA (1988). Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom. J Biol Chem., 263(21):10192-10197.
2. Narayanan P (1999). Common structural elements in 'scorpion-toxin' type proteins. J Postgrad Med., 45(1):23-27.
3. Martins JC, Zhang W, Tartar A, Lazdunski M, Borremans FA. (1990). Solution conformation of leiurotoxin I (Scyllatoxin) by 1H nuclear magnetic resonance: Resonance assignment and secondary structure. FEBS Lett., 260(2):249-253.
4. Calabro V, Sabatier JM, Blanc E, Lecomte C, Van Rietschoten J, Darbon H (1997). Differential involvement of disulfide bridges on the folding of a scorpion toxin. Journal of Peptide Research., 50(1):39-47.
5. Sabatier JM, Lecomte C, Mabrouk K, Darbon H, Oughideni R, Canarelli S, Rochat H, Martin-Eauclaire MF, Rietschote JV (1996). Synthesis and Characterization of Leiurotoxin I Analogs Lacking One Disulfide Bridge: Evidence That Disulfide Pairing 3-21 Is Not Required for Full Toxin Activity. Biochemistry., 35 (33):10641-10647.
6. Zhu Q, Liang S, Martin L, Gasparini S, Me´nez A, Vita C (2002). Role of Disulfide Bonds in Folding and Activity of Leiurotoxin I: Just Two Disulfides Suffice. Biochemistry 41(38):11488-11494.
二硫键广泛存在与蛋白结构中,对稳定蛋白结构具有非常重要的意义,二硫键一般是通过序列中的2个Cys的巯基,经氧化形成。
形成二硫键的方法很多:空气氧化法,DMSO氧化法,过氧化氢氧化法等。
二硫键的合成过程, 可以通过Ellman检测以及HPLC检测方法对其反应进程进行监测。
如果多肽中只含有1对Cys,那二硫键的形成是简单的。多肽经固相或液相合成,然后在pH8-9的溶液中进行氧化。
当需要形成2对或2对以上的二硫键时,合成过程则相对复杂。尽管二硫键的形成通常是在合成方案的最后阶段完成,但有时引入预先形成的二硫化物是有利于连合或延长肽链的。通常采用的巯基保护基有trt, Acm, Mmt, tBu, Bzl, Mob, Tmob等多种基团。我们分别列出两种以2-Cl树脂和Rink树脂为载体合成的多肽上多对二硫键形成路线:
二硫键反应条件选择
二硫键即为蛋白质或多肽分子中两个不同位点Cys的巯基(-SH)被氧化形成的S-S共价键。 一条肽链上不同位置的氨基酸之间形成的二硫键,可以将肽链折叠成特定的空间结构。多肽分 子通常分子量较大,空间结构复杂,结构中形成二硫键时要求两个半胱氨酸在空间距离上接近。 此外,多肽结构中还原态的巯基化学性质活泼,容易发生其他的副反应,而且肽链上其他侧链 也可能会发生一系列修饰,因此,肽链进行修饰所选取的氧化剂和氧化条件是反应的关键因素, 反应机理也比较复杂,既可能是自由基反应,也可能是离子反应。
反应条件有多种选择,比如空气氧化,DMSO氧化等温和的氧化过程,也可以采用H2O2,I2, 汞盐等激烈的反应条件。
空气氧化法: 空气氧化法形成二硫键是多肽合成中最经典的方法,通常是将巯基处于还原态的多肽溶于水中,在近中性或弱碱性条件下(PH值6.5-10),反应24小时以上。为了降低分子之间二硫键形成的可能,该方法通常需要在低浓度条件下进行。
碘氧化法:将多肽溶于25%的甲醇水溶液或30%的醋酸水溶液中,逐滴滴加10-15mol/L的碘进行氧化,反应15-40min。当肽链中含有对碘比较敏感的Tyr、Trp、Met和His的残基时,氧化条件要控制的更精确,氧化完后,立即加入维生素C或硫代硫酸钠除去过量的碘。 当序列中有两对或多对二硫键需要成环时,通常有两种情况:
自然随机成环: 序列中的Cys之间随机成环,与一对二硫键成环条件相似;
定点成环: 定点成环即序列中的Cys按照设计要求形成二硫键,反应过程相对复杂。在 固相合成多肽之前,需要提前设计几对二硫键形成的顺序和方法路线,选择不同的侧链 巯基保护基,利用其性质差异,分步氧化形成两对或多对二硫键。 通常采用的巯基保护 基有trt, Acm, Mmt, tBu, Bzl, Mob, Tmob等多种基团。