浙江省科技型企业---加速您的多肽研究
首页 >多肽产品 >Insulin β Chain Peptide (15-23)

多肽产品

247044-67-3,Insulin β Chain Peptide (15-23),H2N-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-COOH,H2N-LYLVCGERG-OH,杭州专肽生物的产品

Insulin β Chain Peptide (15-23)

是胰岛相关 T 细胞识别的胰岛素衍生肽。

编号:200587

CAS号:247044-67-3

单字母:H2N-LYLVCGERG-OH

纠错
  • 编号:200587
    中文名称:Insulin β Chain Peptide (15-23)
    CAS号:247044-67-3
    单字母:H2N-LYLVCGERG-OH
    三字母:H2N

    N端氨基:N-terminal amino group。在肽或多肽链中含有游离a-氨基的氨基酸一端。在表示氨基酸序列时,通常将N端放在肽链的左边。

    -Leu

    L-亮氨酸:leucine。系统命名为(2S)-氨基-4-甲基戊酸。是编码氨基酸。是哺乳动物的必需氨基酸。符号:L,Leu。

    -Tyr

    L-酪氨酸:tyrosine。系统命名为(2S)-氨基-3-(4-羟基苯基)丙酸。是编码氨基酸。符号:Y,Tyr。

    -Leu

    L-亮氨酸:leucine。系统命名为(2S)-氨基-4-甲基戊酸。是编码氨基酸。是哺乳动物的必需氨基酸。符号:L,Leu。

    -Val

    L-缬氨酸:valine。系统命名为(2S)-氨基-3-甲基丁酸。是编码氨基酸。是哺乳动物的必需氨基酸。符号:V,Val。在某些放线菌素如缬霉素中存在 D-缬氨酸。

    -Cys

    半胱氨酸:cysteine。L-半胱氨酸的系统命名为(2R)-氨基-3-巯基丙酸,是编码氨基酸。符号:C,Cys。D-半胱氨酸存在于萤火虫的萤光素酶中。

    -Gly

    甘氨酸:glycine。系统命名为 2-氨基乙酸。是编码氨基酸中没有旋光性的最简单的氨基酸,因具有甜味而得名。符号:G,Gly。

    -Glu

    L-谷氨酸:glutamic acid。系统命名为(2S)-氨基-戊二酸。是编码氨基酸。符号:E,Glu。D-谷氨酸存在于多种细菌的细胞壁和某些细菌杆菌肽中。

    -Arg

    L-精氨酸:arginine。系统命名为(2S)-氨基-5-胍基戊酸。在生理条件下带正电荷,为编码氨基酸。是幼小哺乳动物的必需氨基酸。符号:R,Arg。

    -Gly

    甘氨酸:glycine。系统命名为 2-氨基乙酸。是编码氨基酸中没有旋光性的最简单的氨基酸,因具有甜味而得名。符号:G,Gly。

    -OH

    C端羧基:C-terminal carboxyl group。在肽或多肽链中含有游离羧基的氨基酸一端。在表示氨基酸序列时,通常将C端放在肽链的右边。

    氨基酸个数:9
    分子式:C44H72N12O13S1
    平均分子量:1009.18
    精确分子量:1008.51
    等电点(PI):11.32
    pH=7.0时的净电荷数:2.94
    平均亲水性:-0.5
    疏水性值:0.51
    消光系数:1490
    来源:人工化学合成,仅限科学研究使用,不得用于人体。
    储存条件:负80℃至负20℃
    标签:含Cys多肽   

  • Insulin β Chain Peptide (15-23),也成为 INS,是胰岛相关 T 细胞识别的胰岛素衍生肽。Insulin β Chain Peptide (15-23) 四聚体染色了 INS 反应性 CTL 克隆 G9C8,但该四聚体和阴性对照四聚体 (TUM) 均未染色 NOD 或 8.3-TCRαβ 转基因 NOD 小鼠脾脏 CD8+ T 细胞。
    Insulin β Chain Peptide (15-23), also known as INS, is an insulin-derived peptide recognized by islet-associated T cells. The Insulin β Chain Peptide (15-23) tetramer stained the INS-reactive CTL clone G9C8, but neither this tetramer nor the negative control tetramer (TUM) stained the splenic CD8+ T cells from NOD or 8.3-TCRαβtransgenic NOD mice[1][2].

    Peptide H-LYLVCGERG-OH is a Research Peptide with significant interest within the field academic and medical research. Recent citations using H-LYLVCGERG-OH include the following: During the early prediabetic period in NOD mice, the pathogenic CD8+ T-cell population comprises multiple antigenic specificities TP DiLorenzo, SM Lieberman , T Takaki, S Honda - Clinical , 2002 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S1521661602952988 Peripheral proinsulin expression controls low-avidity proinsulin-reactive CD8 T cells in type 1 diabetes TC Thayer, JA Pearson, E De Leenheer , SJ Hanna - Diabetes, 2016 - Am Diabetes Assochttps://diabetesjournals.org/diabetes/article-abstract/65/11/3429/17484 Convective-heating thermal decomposition/digestion of peptides and proteins on surfaces R Zhou, F Basile - Journal of Analytical and Applied Pyrolysis, 2017 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0165237016307987 Convective-Heating Thermal Decomposition/Digestion R Zhou, F Basile - Digestion, 2014 - academia.eduhttps://www.academia.edu/download/111737285/j.jaap.2017.07.00420240223-1-9015as.pdf A Single L/D-Substitution at Q4 of the mInsA2-10 Epitope Prevents Type 1 Diabetes in Humanized NOD Mice M Zhang, Y Wang, X Li, G Meng, X Chen - Frontiers in , 2021 - frontiersin.orghttps://www.frontiersin.org/articles/10.3389/fimmu.2021.713276/full Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies M Clement , JA Pearson, S Gras , HA Van Den Berg - Scientific reports, 2016 - nature.comhttps://www.nature.com/articles/srep35332 Functional inhibition related to structure of a highly potent insulin-specific CD8 T cell clone using altered peptide ligands LG Petrich de Marquesini - European journal of , 2008 - Wiley Online Libraryhttps://onlinelibrary.wiley.com/doi/abs/10.1002/eji.200737762 Proteomic identification of MHC class I-associated peptidome derived from non-obese diabetic mouse thymus and pancreas L Wang, X Li, S Yang, X Chen, J Li, S Wang - Journal of , 2023 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S1874391922002706 Peptide-specific cytotoxicity of T lymphocytes against glutamic acid decarboxylase and insulin in type 1 diabetes mellitus K Kimura, T Kawamura, S Kadotani, H Inada - Diabetes research and , 2001 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0168822700002254 The development of a sub/supercritical fluid chromatography based purification method for peptides K Govender , T Naicker , S Baijnath , HG Kruger - of Pharmaceutical and , 2020 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0731708520314254 Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+ T Cells JA Pearson, TC Thayer, JE McLaren, K Ladell - Diabetes, 2016 - Am Diabetes Assochttps://diabetesjournals.org/diabetes/article-abstract/65/6/1679/35164 Analysis of structure and function relationships of an autoantigenic peptide of insulin bound to H-2Kd that stimulates CD8 T cells in insulin-dependent diabetes FS Wong , AK Moustakas , L Wen - Proceedings of the , 2002 - National Acad Scienceshttps://www.pnas.org/doi/abs/10.1073/pnas.072037299 Targeting proinsulin to local immune cells using an intradermal microneedle delivery system; a potential antigen-specific immunotherapy for type 1 diabetes F Arikat, SJ Hanna, RK Singh, L Vilela, FS Wong - Journal of controlled , 2020 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0168365920301218 Adoptive transfer of autoimmune diabetes using immunodeficient nonobese diabetic (NOD) mice E De Leenheer , FS Wong - Type-1 Diabetes: Methods and Protocols, 2016 - Springerhttps://link.springer.com/protocol/10.1007/7651_2015_294 MCS-18, a novel natural plant product prevents autoimmune diabetes C Seifarth, L Littmann, Y Resheq, S Rössner - Immunology , 2011 - Elsevierhttps://www.sciencedirect.com/science/article/pii/S0165247811001325 Antigen-dependent immunotherapy of non-obese diabetic mice with immature dendritic cells C Haase, L Yu, G Eisenbarth - Clinical & Experimental , 2010 - academic.oup.comhttps://academic.oup.com/cei/article-abstract/160/3/331/6428884 Presentation of Antigen by Endothelial Cells and Chemoattraction Are Required for Homing of Insulin-specific CD8+ T Cells AY Savinov , FS Wong , AC Stonebraker - The Journal of , 2003 - rupress.orghttps://rupress.org/jem/article-abstract/197/5/643/39754 Contribution of Fas to diabetes development AY Savinov , A Tcherepanov - Proceedings of the , 2003 - National Acad Scienceshttps://www.pnas.org/doi/abs/10.1073/pnas.0237359100 Progression of autoimmune diabetes driven by avidity maturation of a T-cell population A Amrani, J Verdaguer , P Serra, S Tafuro, R Tan - Nature, 2000 - nature.comhttps://www.nature.com/articles/35021081

  • Amrani A, et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature. 2000;406(6797):739-742. : https://pubmed.ncbi.nlm.nih.gov/10963600/
    Takaki T, et al. Requirement for both H-2Db and H-2Kd for the induction of diabetes by the promiscuous CD8+ T cell clonotype AI4. J Immunol. 2004;173(4):2530-2541. : https://pubmed.ncbi.nlm.nih.gov/15294969/

  • 多肽H2N-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-COOH的合成步骤:

    1、合成CTC树脂:称取2.09g CTC Resin(如初始取代度约为0.82mmol/g)和2.06mmol Fmoc-Gly-OH于反应器中,加入适量DCM溶解氨基酸(需要注意,此时CTC树脂体积会增大好几倍,避免DCM溶液过少),再加入5.14mmol DIPEA(Mw:129.1,d:0.740g/ml),反应2-3小时后,可不抽滤溶液,直接加入1ml的HPLC级甲醇,封端半小时。依次用DMF洗涤2次,甲醇洗涤1次,DCM洗涤一次,甲醇洗涤一次,DCM洗涤一次,DMF洗涤2次(这里使用甲醇和DCM交替洗涤,是为了更好地去除其他溶质,有利于后续反应)。得到  Fmoc-Gly-CTC Resin。结构图如下:

    2、脱Fmoc:加3倍树脂体积的20%Pip/DMF溶液,鼓氮气30分钟,然后2倍树脂体积的DMF 洗涤5次。得到 H2N-Gly-CTC Resin 。(此步骤脱除Fmoc基团,茚三酮检测为蓝色,Pip为哌啶)。结构图如下:

    3、缩合:取5.14mmol Fmoc-Arg(Pbf)-OH 氨基酸,加入到上述树脂里,加适当DMF溶解氨基酸,再依次加入10.28mmol DIPEA,4.88mmol HBTU。反应30分钟后,取小样洗涤,茚三酮检测为无色。用2倍树脂体积的DMF 洗涤3次树脂。(洗涤树脂,去掉残留溶剂,为下一步反应做准备)。得到Fmoc-Arg(Pbf)-Gly-CTC Resin。氨基酸:DIPEA:HBTU:树脂=3:6:2.85:1(摩尔比)。结构图如下:

    4、依次循环步骤二、步骤三,依次得到

    H2N-Arg(Pbf)-Gly-CTC Resin

    Fmoc-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    H2N-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    Fmoc-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    H2N-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    Fmoc-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    H2N-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    Fmoc-Val-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    H2N-Val-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    Fmoc-Leu-Val-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    H2N-Leu-Val-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    Fmoc-Tyr(tBu)-Leu-Val-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    H2N-Tyr(tBu)-Leu-Val-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    Fmoc-Leu-Tyr(tBu)-Leu-Val-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin

    以上中间结构,均可在专肽生物多肽计算器-多肽结构计算器中,一键画出。

    最后再经过步骤二得到 H2N-Leu-Tyr(tBu)-Leu-Val-Cys(Trt)-Gly-Glu(OtBu)-Arg(Pbf)-Gly-CTC Resin,结构如下:

    5、切割:6倍树脂体积的切割液(或每1g树脂加8ml左右的切割液),摇床摇晃 2小时,过滤掉树脂,用冰无水乙醚沉淀滤液,并用冰无水乙醚洗涤沉淀物3次,最后将沉淀物放真空干燥釜中,常温干燥24小试,得到粗品H2N-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-COOH。结构图见产品结构图。

    切割液选择:1)TFA:H2O=95%:5%、TFA:H2O=97.5%:2.5%

    2)TFA:H2O:TIS=95%:2.5%:2.5%

    3)三氟乙酸:茴香硫醚:1,2-乙二硫醇:苯酚:水=87.5%:5%:2.5%:2.5%:2.5%

    (前两种适合没有容易氧化的氨基酸,例如Trp、Cys、Met。第三种适合几乎所有的序列。)

    6、纯化冻干:使用液相色谱纯化,收集目标峰液体,进行冻干,获得蓬松的粉末状固体多肽。不过这时要取小样复测下纯度 是否目标纯度。

    7、最后总结:

    杭州专肽生物技术有限公司(ALLPEPTIDE https://www.allpeptide.com)主营定制多肽合成业务,提供各类长肽,短肽,环肽,提供各类修饰肽,如:荧光标记修饰(CY3、CY5、CY5.5、CY7、FAM、FITC、Rhodamine B、TAMRA等),功能基团修饰肽(叠氮、炔基、DBCO、DOTA、NOTA等),同位素标记肽(N15、C13),订书肽(Stapled Peptide),脂肪酸修饰肽(Pal、Myr、Ste),磷酸化修饰肽(P-Ser、P-Thr、P-Tyr),环肽(酰胺键环肽、一对或者多对二硫键环),生物素标记肽,PEG修饰肽,甲基化修饰肽

    以上所有内容,为专肽生物原创内容,请勿发布到其他网站上。

  • 暂时没有数据