当蒸发二苯丙氨酸的 HFIP 溶液时,会形成纳米管。这些结构已用于铸造银纳米线,通过酶促降解从线上去除二肽。
编号:167664
CAS号:2577-40-4
单字母:H2N-FF-OH
编号: | 167664 |
中文名称: | 二肽Phe-Phe |
英文名: | Phe-Phe |
CAS号: | 2577-40-4 |
单字母: | H2N-FF-OH |
三字母: | H2N N端氨基 -Phe苯丙氨酸 -Phe苯丙氨酸 -OHC端羧基 |
氨基酸个数: | 2 |
分子式: | C18H20N2O3 |
平均分子量: | 312.36 |
精确分子量: | 312.15 |
等电点(PI): | - |
pH=7.0时的净电荷数: | 0.97 |
平均亲水性: | -2.5 |
疏水性值: | 2.8 |
外观与性状: | 白色粉末状固体 |
消光系数: | - |
来源: | 人工化学合成,仅限科学研究使用,不得用于人体。 |
纯度: | 95%、98% |
盐体系: | 可选TFA、HAc、HCl或其它 |
生成周期: | 2-3周 |
储存条件: | 负80℃至负20℃ |
标签: | 二肽(Dipeptide) 再生医学 自组装相关肽 |
When evaporating HFIP solutions of diphenylalanine, nanotubes are formed. These structures have been used for casting silver nanowires, the dipeptide is removed from the wires by enzymatic degradation.
1、什么是多肽自组装?
自组装多肽是指能够在一定条件下,通过π-π堆积,静电相互作用等分子间作用力,形成组装体的多肽类材料。此类材料具有良好的生物相容性和可控性,能够形成颗粒,纤维和凝胶等纳米结构,发挥特定的形貌学功能,广泛应用在生物医学等领域。自组装多肽组装之后形成的形态通常有球形胶束、囊泡、线状、带状、层状、柱状、管状、球状和网状等结构。单体肽分子可自组装成微纳米结构,如纳米纤维、纳米管、纳米囊、纳米粒等。自组装多肽发现于一次偶然的情况,1993年,Zhang等偶然从酵母蛋白(Yeast protein) 中分离出一个奇怪的重复片段AEAEAKAAEAEAKAK (EAK16),这种肽可以通过离子互补作用自组装成纳米纤维进而形成水凝胶结构[1]。EAK16因其良好的生物相容性可用于临床治疗、修复神经、药物缓释等。自此以后,多肽纳米自组装技术进入大众视野,各个领域的科学家开始着手研究自组装多肽的功能。
2、自组装多肽的应用:
自组装多肽是一种特殊的蛋白质分子,具有自发地通过非共价相互作用形成有序结构的能力。这些结构可以应用于许多领域,以下是一些自组装多肽的应用:
1. 药物输送系统:自组装多肽可以用作药物输送系统的基础。它们可以通过调整多肽的氨基酸序列来实现药物的载荷和释放,从而提高药物的稳定性和选择性,减少毒副作用。
2. 组织工程:自组装多肽可以用于组织工程,促进细胞的黏附、增殖和分化。它们可以形成仿生的支架结构,有助于修复组织和器官。
3. 纳米技术:自组装多肽可用于纳米技术应用。通过调整多肽的结构和功能,可以制备纳米颗粒、纳米线或纳米薄膜,用于传感器、纳米电子学和纳米药物输送等领域。
4. 仿生材料:自组装多肽可以用于制备仿生材料,如仿生膜、仿生纤维和仿生水凝胶,这些材料具有生物相容性和生物可降解性。
5. 生物传感器:自组装多肽可以用于制备生物传感器,用于检测生物分子、环境污染物或疾病标志物等。
6. 纳米催化剂:自组装多肽可以用作纳米催化剂的支架,有助于提高催化剂的稳定性和活性。
7. 光子学:自组装多肽在光子学领域有应用潜力,可以用于制备光子晶体、光子波导和光学传感器等。
8. 人工骨架:自组装多肽可以用于制备人工骨架,用于支持细胞生长和骨组织的再生。
3、多肽自组装的形成
自组装多肽的形成是由多肽分子之间的非共价相互作用驱动的过程。这些非共价相互作用包括氢键、范德华力、疏水相互作用和静电相互作用等。当多肽分子在适当的条件下(例如特定的溶液pH、温度等)相遇时,它们会自发地形成有序结构,如螺旋状、β折叠状或胶束等,从而形成自组装多肽。
以下是自组装多肽形成的主要过程:
1. 亲疏水相互作用:多肽分子通常包含极性和非极性氨基酸残基。在水性溶液中,极性残基会朝向水分子,形成氢键和离子相互作用,而非极性残基则会聚集在一起,形成疏水内核。这种亲疏水相互作用促进了多肽的自组装。
2. 氢键:氢键是一种强大的非共价相互作用,常见于多肽分子之间的氨基酸残基。氢键形成是通过氢原子与带有电负性的氮、氧或氟原子之间的相互作用。这种氢键的形成有助于稳定多肽的二级结构,如螺旋和β折叠。
3. 范德华力:范德华力是一种弱的吸引力,由于分子间的临时电荷不均而产生。虽然每个范德华力相对较弱,但当许多分子之间同时作用时,它们可以在自组装过程中起到重要作用。
4. 静电相互作用:如果多肽分子带有带电残基(正电荷或负电荷),它们之间的静电相互作用也可能促进自组装。
5. 疏水聚集:在水性溶液中,非极性残基倾向于聚集在一起,形成疏水内核。这种疏水聚集可以驱动多肽的自组装过程。
6. π-π堆积:在含有芳香族残基的多肽中,π-π堆积也可能参与多肽的自组装。这是芳香族环之间的π电子云相互作用,有助于稳定多肽的空间结构。
总的来说,自组装多肽的形成是一个复杂的过程,受到多种非共价相互作用的共同影响。通过调整多肽的氨基酸序列和环境条件,可以控制和定向自组装过程,从而获得特定结构和功能的自组装多肽材料。这种自组装过程在生物学、材料科学和纳米技术等领域具有广泛的应用潜力。
4、自组装多肽的类型
1. 淀粉样多肽(Amyloid-like Peptides):淀粉样多肽是一类能够形成β折叠结构的自组装多肽。它们通常具有高度有序的二级结构,形成纤维状或胶束状的聚集体。淀粉样多肽在生物学中与一些神经退行性疾病如阿尔茨海默症相关。
2. β-寡肽(β-Oligopeptides):β-寡肽是一类由β氨基酸残基组成的短多肽链。它们能够通过水合作用形成自组装结构,通常形成纤维状或胶束状的聚集体。
3. 螺旋多肽(Helical Peptides):螺旋多肽是一类能够形成螺旋结构的自组装多肽。螺旋多肽通常通过氢键相互作用稳定二级结构,形成纤维状或膜状的自组装体。
4. 胶束形成多肽(Micelle-forming Peptides):这类多肽能够在水性环境中形成胶束结构,其中疏水残基聚集在内核,而亲水残基则朝向水相。
5. 水凝胶形成多肽(Hydrogel-forming Peptides):水凝胶形成多肽可以在水性环境中自组装形成凝胶状结构。这类多肽通常具有优异的生物相容性和生物可降解性,用于组织工程和生物医学应用。
6. 共价交联自组装多肽(Covalently Crosslinked Peptides):这类多肽通过共价键交联形成稳定的结构。在自组装过程中,多肽分子之间的功能基团会发生化学反应,形成共价键,从而构建长范围的自组装结构。
7. 人工蛋白质(Artificial Proteins):科学家们可以通过合成特定的氨基酸序列来设计人工蛋白质,这些人工蛋白质具有特定的自组装性质,可用于纳米技术、药物输送和生物材料等领域。
8. 离子互补性多肽:离子互补性多肽的特征是带负电的氨基酸残基和带正电的氨基酸残基交替排列,通过静电相互作用、氢键、范德华力来启动分子自组装。其亲水区和疏水区交替排列,分成两个有序的区域,疏水氨基酸残基折叠屏蔽水分子,亲水区具有规则有序的正负电荷相互吸引。分子间氢键的形成加速了肽的自组装,离子键的相互嵌合使自组装结构强度增加。该类肽形成模式:Ⅰ型(−+);Ⅱ型(−−++);Ⅳ型(−−−−++++)。通过重复和结合电荷分布可合理设计离子互补性肽。目前,RADA16-I作为经典的离子互补性多肽,其在水溶液中自发地形成纤维水凝胶的能力已经用于生物医学和临床领域,但同时,RADA16-I也暴露出大多数此类肽的通病,即在低pH时造成不稳定性。为了进一步巩固离子互补肽在医学上的应用,科学家们已经致力于“改装”此类肽。Zhang等开发了一种新的设计模式,以Ac-RVQVRVQVRVQVCOOH(Z1) 为例,Z1的设计与传统的设计理念不同:在带正电的氨基酸和负电的氨基酸中间穿插极性未带电的氨基酸保持电荷分离并在N端酰化,与传统离子互补性多肽相比,Z1在形成纤维的能力以及水凝胶的机械强度上都优于前者,并在全pH (0-14) 中不影响Z1通过盐触发形成β-折叠结构的自组装。此外,为了更好地完善离子互补性多肽的优点,近期已有研究表明,在生理pH条件下,带有相反电荷的两种离子互补性多肽驱动生成的水凝胶表现出对成纤维细胞更好的生物相容性,再一次证明了水凝胶在生物医学中应用的潜力。离子互补性多肽是自组装肽的研究起点,揭开了广大科研工作者研究自组装肽的序幕。
9. 表面活性剂类多肽:为了进一步完善离子互补性多肽的特点,人们开始致力于改变疏水作用力来进一步研究亲水氨基酸和疏水氨基酸的比例关系,表面活性剂类多肽(Surfactant-like peptides,SLP) 就此产生。SLP有一个显著的特征:模拟多肽聚合与表面活性剂分子的性质,该肽分为疏水区和亲水区。亲水头部一般由1-2个带电的氨基酸残基(His、Asp、Glu) 组成。疏水尾部一般由3-9个非极性氨基酸(Ala、Phe、Ile、Val) 组成。一般来说疏水尾部不会超过9个氨基酸,因为过多的疏水氨基酸会影响此类肽在介质中的溶解度。SLP可组装成纳米管、纳米囊、纳米纤维结构。Wang等揭示了传统SLP (A3K、A6K、A9K) 在水溶液中的自组装形态与趋势,A3K会自组装成膜结构,A6K组装成纳米纤维结构,A9K会组装成直径更小的纳米棒状结构,同时赖氨酸的存在赋予了这3种肽抗菌效力。由此可见,增加疏水链长度会影响肽动态自组装的趋势或自聚行为,此外,以上研究都是使用亲水氨基酸作为头部搭配不超过9个氨基酸的疏水尾,这就证明了疏水链长度要适当,太长会降低肽在水溶液中的溶解度,太短又会导致自聚集的可能性变小,所以合理设计头部基团与疏水尾的长度可以获得合适的表面活性剂类多肽。当然,SLP并不拘泥于形成特定的结构模式,Mello LR及同事讨论了不同两亲性设计所引起的肽纳米形貌的改变,其设计的双嵌段八聚体肽FFFFRRRR-NH2与对照肽RRFFFFRR-NH2分别形成球状胶束以及纳米带结构。FFFFRRRR-NH2形成胶束的原因可能是静电斥力导致的β-折叠结构含量的降低,这种情况下氢键的支持力减弱,维持组装体的疏水作用力可能是主要作用力,当疏水作用力的作用超过氢键时,为了适应球形界面的曲率要求,肽粒子结合朝向球状转变。而对于RRFFFFRR-NH2形成纳米带的原因可能是当Arg两侧分布时,氨基端羧基端都会形成有序的水平面,在Phe提供的疏水力驱动肽链侧向结合,从而延展为纳米带形貌。另外Zhao等所设计的SLP (I2K2I2、I4K2、KI4K) 通过改变序列排列设计不同纳米结构体,其中I4K2、KI4K分别形成纳米纤维与纳米管,而I2K2I2却因缺乏β-折叠没有形成纳米结构,这证明了β-折叠结构的侧向堆积与氨基酸侧链之间的相互作用有利于纳米结构的形成。 通过添加阳离子残基可赋予SLP类似表面活性剂抗菌的能力。高抑菌性、低毒性、低成本似乎已成为此类肽的标签。对于未来抗菌肽和细胞穿透肽的发展,添入SLP的设计因素或许具有明朗的应用前景。
由于SLP表面极性亲水面与非极性疏水面在多肽螺旋轮中均匀分布,因此两亲性成为这类肽组装过程的重要参数,它不仅可以调节疏水引力将多肽联结在一起,还可以通过两亲性设计调节SLP所涉及的不同细胞反应。SLP虽没有离子互补性多肽作为缓释功能的应用强,但SLP对于各领域的应用潜力较高,其结构设计简单、生产成本较低、生物相容性不亚于离子互补性多肽的特点,会使其在不久的将来广泛应用于生物医药领域。
10. 化学基团修饰类多肽:近年来,科学家们已经不满足于通过对天然氨基酸的改变来设计自组装多肽,而是使用高度疏水的烷基链、脂质基团以及糖类等修饰多肽。化学基团修饰多肽已被证明是可行的。化学基团修饰多肽表现出二级结构增多从而使纳米体更加稳定。化学基团可以通过在肽链本身设计相应的功能区域发挥特定的作用。目前,关于疏水烷基链两亲性多肽自组装的工作被广泛报道。疏水作用力作为驱动分子自组装的核心力,通过在氨基端设计连接烷基碳链,可以使此类肽的功能和性质发生改变。Otsuka等讨论了C16-W3K的疏水性烷基尾部长度和其他外部因素对C16-W3K溶液凝胶行为的影响,C16-W3K可形成α-螺旋结构,结果表明,较长的烷基化尾促进了C16-W3K多肽溶液的自组装,该脂肽(Lipopeptide) 分子可以逐渐从球状结构转变成蠕虫状最终变为凝胶状。遗憾的是,此文献未阐明纳米结构转变的机制,但脂质尾的偶联被证明确实增加了自组装趋势。在此基础上,Hasan等的工作也表明尾长是影响自组装的主要因素,脂肽的抗菌活性也明显依赖于尾长,并且多肽形成胶束结构具有更优的抗菌效果。许多烷基化的两亲性多肽自组装成直径约为几纳米、长度约为几微米的圆柱形纳米纤维,还有少数可形成巨大纳米带。笔者在实验过程中发现,并不是连接脂质尾就可以促进多肽分子自组装,在中性条件的水溶液中,脂质尾长度C8及以下以及C18以上并不会促进多肽自组装进程,反而在水溶液中多肽显示出无序结构,由此可见,适当的脂质尾对于多肽组装成稳定的有序结构是具有积极作用的,可根据改变不同脂肪链的长度和正电荷数从而影响脂肽分子生物学活性。疏水作用力过强或过弱可能会影响氢键的生成和稳定,从而导致纳米结构的崩裂。
众所周知,设计脂肽分子并不仅仅局限于连接碳链,棕榈酰基(Palmitoyl)、肉豆蔻酸(Myristic acid) 等脂质基团也是很好的选择。专肽生物有研究表明,人α-防御素5 (HD5) 通过在C端肉豆蔻酰化形成的纳米宿主防御肽(Host defense peptide) 表现出比HD5单体更强的体外杀菌效果以及自组装行为,这种纳米自组装体在小鼠体内实验中成功治疗由大肠杆菌Escherichia coli ATCC25922引起的脓毒症(Sepsis),并表现出相当低的细胞毒性和溶血活性,这为维持肠道动态平衡以及减少炎症反应提供了理论基础。到目前为止,人们致力于合成具有可控结构的糖肽聚合物用于开发新型生物材料。Qi等设计了一种壳聚糖-肽偶联物,它是由壳聚糖(Chitosan) 主链与一条抗菌肽(Antimicrobial peptides,AMPs) 和另外一条酶裂解肽组成(CPC-1),CPC-1起初会在聚乙二醇(Polyethylene glycol,PEG) 的诱导下形成纳米颗粒,然后在多种细菌分泌的明胶酶的切割下,CPC-1会自发地转变为纤维结构,当被明胶酶切割时,CPC-1被裂解致使由壳聚糖与PEG稳定的纳米颗粒完成解体,AMPs被暴露出来,完成杀菌过程。被化学修饰的多肽已表现出更加优异的应用于疾病诊断、临床医学的潜力。天然肽的缺点日益凸显,如何优化天然肽形成纳米肽,并发挥出纳米肽的优势已成为科研人员的当务之急。文中阐述的3种纳米多肽类型为纳米肽的设计提供了新的思路。
5、影响多肽自组装的因素
1. pH值
多肽的自组装的重要核心驱动力是分子之间形成氢键。但氢键的形成易受pH的影响,改变溶液的pH会使肽链的C端和N端或一些化学基团出现正电化或负电化。这就意味着肽链形成带正负电荷的多肽,从而表现出不同的自组装趋势、纳米结构和结构功能特点。Chen等设计了带有不同长度的组氨酸AMPs:WH5(QL)6K2、WH7(QL)6K2和WH9(QL)6K2。3种AMPs都可在中性pH下形成基于β-折叠诱导的纳米纤维结构,当pH低于组氨酸的pKa时,静电斥力导致纳米结构的解体,实验表明,当pH较低时,组氨酸发生质子化,赖氨酸与组氨酸形成静电斥力,纳米结构解体转为单体AMPs分子,引起细菌膜的裂解。此项研究为以细菌代谢产生的乳酸引起的局部感染输送pH响应性药物提供了理论基础。
最近的研究表明,两条胶原模拟肽(CMPS) NapFFGKO和NapFFGDO会通过pH切换实现溶胶到凝胶的转变,当pH为生理条件下时,两条肽都不会形成凝胶,当pH为9.0时,阴离子与NapFFGKO的胺基通过分子间缔合诱导凝胶的形成,当pH为5.0时,去质子化的NapFFGDO又会与正离子结合形成凝胶,有趣的是,当两条肽聚合一起又可以在生理pH下共组装成水凝胶,由此可见,静电相互作用对于多肽的聚合产生了显著的影响。
pH值对于富含带电的氨基酸肽序列(如Glu、Asp、Lys、His和Arg) 至关重要,并对氢键的形成与多肽首尾基团的呈电化具有显著影响。因此通过控制pH,可以合理地设计基于不同酸碱度的具有释放药物、缓释等应用的自组装多肽。
2. 肽浓度
浓度是寡肽的自组装聚合的重要参数,浓度研究可以确定寡肽开始聚集的临界聚集浓度(Critical aggregation concentration,CAC)。寡肽在CAC下以单体分子形式存在,高于CAC时开始聚集。肽浓度高于临界胶束浓度(Critical micelle concentration,CMC) 时,肽分子之间才发生缔结作用。Fung等探究了EAK16-Ⅱ的自组装随浓度变化而变化的过程。原子力显微镜(Atomic force microscopy,AFM) 显示当浓度为0.05 mg/mL时,溶液中观察到一条条孤立的细丝以及少量的球状聚集体。在浓度为0.1、0.2、0.5 mg/mL的溶液中发现有细长的纤维,当浓度低于0.1 mg/mL时,观察到的纳米结构(即纤维、细丝和球状聚集体) 的数量减少,纤维宽度也随浓度的变化而变化。Chang等设计了一种用肝素(Heparin) 结合成的自组装肽两亲性分子(PA),序列为AKKARKAKKARK,该肽通过自身的疏水性和β-折叠结构可形成直径为7-10 nm的圆柱形结构,当浓度达到CMC时,两亲性多肽表现出更强的杀灭革兰氏阴性菌(Gram-negative bacteria) 的能力。最近的研究表明α-糜蛋白酶(α-chymotrypsin) 吸附在KLOEt表面可以控制寡肽的自组装,当寡肽到达CAC时可形成几纳米的纤维网络,α-糜蛋白酶的表面密度介导了寡肽的自组装动力学,得出的结论是多肽的聚集浓度与酶浓度呈负相关。在该酶促自组装系统中,低浓度和中浓度的多肽倾向于α-螺旋,而高浓度的多肽又转变为β-折叠,但所有浓度的多肽都有形成纤维网络的趋势,只是形成自组装体的时间不同。
浓度的改变导致氢键等非共价键力的含量发生改变,这会引起肽分子之间电子云重排,进而引起纳米形貌的改变,此外,致密的纤维网络表面可能与水等溶剂发生协同作用从而使纳米结构更加稳定,这为自组装生物传感器功能材料的发展提供新的视野。
3. 离子浓度
离子浓度向来是影响肽分子堆积和蛋白质性质结构功能的重要因素,盐离子的存在会使带电荷的基团产生屏蔽作用,从而使分子之间的静电作用减弱。电荷屏蔽作用还会引起分子间疏水键作用力的增强,使肽分子更容易聚合引起自组装。离子还会与个别氨基酸序列特异性识别并作用,在极性氨基酸中构成盐桥,从而通过分子间的物理交联促进自组装结构生成。
Hong等研究了NaCl对EAK16-I (AEAKAEAKAEAKAEAK) 的自组装的影响。在盐离子存在的条件下,平台处的表面张力值大约为55 MJ/m2,在盐离子不存在的条件下,平台处的表面张力值大约为57 MJ/m2,由此可见在盐离子存在的条件下,EAK16-Ⅰ的自组装表面活性要高于无盐离子存在时。在NaCl存在且肽浓度相同时,EAK16-Ⅰ形成不同于无NaCl形成的球状结构的纤维。盐离子的存在可能有利于纤维纳米结构的产生。Ozbas等研究了MAX1有无盐离子的构象显示,在肽浓度(< 2 wt%)、温度都相同时,pH为7.4无盐的情况下,肽分子呈现无序结构。在溶液中添加少量的盐后,离子与带电荷氨基酸的静电相互作用使MAX1迅速形成β-发夹结构并随后形成β-折叠。发夹分子通过疏水塌陷和氢键超分子组装成三维水凝胶网络。由于多种离子在体内具有调控细胞新陈代谢、维持血管内外离子平衡以及促进骨质发育等作用,基于离子浓度响应的自组装多肽在医学领域具有广泛的应用潜能。
4. 温度
温度的升高会破坏体系的氢键,使自组装体系的稳定性减弱,从而发生构象上的改变。从头设计的肽分子(KIGAKI)3-NH2与一个中心四肽Thr-DPro-Pro-Gly相连接,由于Pro的存在,该肽偶联物分子在20-50 ℃水溶液中表现为无规卷曲的形式,而将体系温度升高到60 ℃时,该偶联物初步显示为β-折叠,继续升高温度至70 ℃,β-折叠结构显著增加并形成纳米纤维进而形成刚性水凝胶,笔者认为这是一种亲水和疏水不平衡现象导致的,温度的升高提高了疏水基团的溶解度,影响了亲疏水基团的平衡,这种行为可根据温度的变化发生可逆性转变。
Tiné等的研究结果表明, 其设计的四离子肽RWDW的自组装过程受温度的影响很大,在15 ℃和25 ℃时,四肽形成紧密且相互缠绕的纤维,当温度上升至35 ℃,纤维结构崩裂且线条相聚较远,此外25 ℃显示的纤维层也逐渐弱化,在所研究的3种温度下,分子聚集体的形态与解聚过程都有所差异。由此可见,升高温度后,多肽自身的氢键发生断裂,二级结构发生改变,疏水作用力和π水作堆积成为主要推动分子自组装的作用力,这会导致纳米结构的转变。当温度返还时,氢键重新生成,二级结构恢复,自组装多肽的纳米形态随之恢复。
5. 手性
自然界中的天然氨基酸都是l型的,而其对应异构体被设计出来显现出更好的优点和特性。手性氨基酸在控制多肽或蛋白质的折叠与超分子组装中起着关键作用。专肽生物最近的研究已经表明了肽的手性不同导致了分子在溶液中的自组装趋向和分子结构的差异。有研究表明,用d-异构体取代l型氨基酸会导致形成组装体的重要参数(两亲性) 的变化。Zhou等研究了d-GL13K和l-GL13K的自组装特性和抗菌活性,实验表明在pH为9.8的溶液反应2 d后,l-GL13K仅仅开始形成纳米纤维,而d-GL13K已经组装成高浓度的扭曲纳米带,且抗菌活性d-GL13K也高于l-GL13K,从而进一步强调了d-型自组装AMPs的抗菌剂应用,其抗酶解的特性也为抗菌剂的开发提供了良好的途径。
DOI | 名称 | |
---|---|---|
10.1126/science.1082387 | Casting metal nanowires within discrete self-assembled peptide nanotubes | 下载 |
10.1081/lpr-64956 | Effect of tryptophan oligopeptides on the size distribution of POPC liposomes: a dynamic light scattering and turbidimetric study | 下载 |
10.1021/ac801651f | Peptide-phospholipid complex formation at liquid-liquid interfaces | 下载 |
10.1021/nl0484189 | Novel electrochemical biosensing platform using self-assembled peptide nanotubes | 下载 |
10.1021/ac050414g | Peptide nanotube-modified electrodes for enzyme-biosensor applications | 下载 |
10.1021/la052409d | Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications | 下载 |
10.1039/b603003c | Non-covalent binding of fullerenes and biomolecules at surface-supported metallosupramolecular receptors | 下载 |
10.1021/ja060358g | Direct observation of the release of phenylalanine from diphenylalanine nanotubes | 下载 |
10.1002/anie.200700194 | Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level | 下载 |
10.1021/ja075118v | Ordering of dipeptide chains on Cu surfaces through 2D cocrystallization | 下载 |
10.1038/nnano.2006.139 | Controlled patterning of aligned self-assembled peptide nanotubes | 下载 |
10.1021/nl801037k | Qualitative mapping of structurally different dipeptide nanotubes | 下载 |
10.2116/analsci.24.1399 | Biphasic electrospray ionization for the study of interfacial complexes | 下载 |
10.1038/nnano.2008.378 | Enzyme-assisted self-assembly under thermodynamic control | 下载 |
10.1002/elps.200800260 | Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis | 下载 |
10.1166/jnn.2008.1311 | Morphology control of one-dimensional peptide nanostructures | 下载 |
10.1021/nn900062q | Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly | 下载 |
10.1016/j.bpj.2009.03.026 | Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations | 下载 |
10.1038/nnano.2009.298 | Self-assembled arrays of peptide nanotubes by vapour deposition | 下载 |
10.1021/la903571y | Control of protein adsorption onto core-shell tubular and vesicular structures of diphenylalanine/parylene | 下载 |
10.1002/adma.200901973 | Role of water in directing diphenylalanine assembly into nanotubes and nanowires | 下载 |
10.1002/adma.200903221 | Peptide/graphene hybrid assembly into core/shell nanowires | 下载 |
10.1088/0957-4484/21/18/185601 | Peptide-templating dye-sensitized solar cells | 下载 |
10.1016/j.colsurfb.2010.05.003 | Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures | 下载 |
10.1039/c0nr00734j | Stability of diphenylalanine peptide nanotubes in solution | 下载 |
10.1166/jnn.2010.2957 | Capillarity induced large area patterning of peptide nanowires | 下载 |
10.1039/c0lc00448k | A microfluidic system incorporated with peptide/Pd nanowires for heterogeneous catalytic reactions | 下载 |
10.1088/0957-4484/22/24/245609 | Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles | 下载 |
10.1021/nn2016524 | Charged diphenylalanine nanotubes and controlled hierarchical self-assembly | 下载 |
10.1271/bbb.100893 | Human bitter taste receptors hTAS2R8 and hTAS2R39 with differential functions to recognize bitter peptides | 下载 |
10.1002/anie.201103941 | Uniaxially oriented peptide crystals for active optical waveguiding | 下载 |
10.1088/0957-4484/22/49/494020 | Bio-inspired strategy for on-surface synthesis of silver nanoparticles for metal/organic hybrid nanomaterials and LDI-MS substrates | 下载 |
10.1016/j.enzmictec.2012.04.004 | Enzyme activity assay for horseradish peroxidase encapsulated in peptide nanotubes | 下载 |
10.1166/jnn.2012.4534 | Self-assembled diphenylalanine nanowires for cellular studies and sensor applications | 下载 |
10.1039/c2an36121c | Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode | 下载 |
10.1021/la401881a | Graphene-induced self-assembly of peptides into macroscopic-scale organized nanowire arrays for electrochemical NADH sensing | 下载 |
10.3791/50946 | Formation of ordered biomolecular structures by the self-assembly of short peptides | 下载 |
10.1021/bm401491k | Vertically aligned peptide nanostructures using plasma-enhanced chemical vapor deposition | 下载 |
10.1021/nn404237f | Expanding the solvent chemical space for self-assembly of dipeptide nanostructures | 下载 |
10.1002/anie.201308792 | Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly | 下载 |
10.1039/c3sm52457d | Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties | 下载 |
10.1039/c4nr00295d | An integrated artificial photosynthesis system based on peptide nanotubes | 下载 |
10.1039/c4nr02645d | Scalable alignment and transfer of nanowires in a Spinning Langmuir Film | 下载 |
10.1039/c4cc05820h | A new approach to molecular self-assembly through formation of dipeptide-based unique architectures by artificial supersaturation | 下载 |
10.1002/adma.201404273 | Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators | 下载 |
10.1186/1556-276X-9-653 | Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires | 下载 |
10.1021/acsnano.5b00623 | Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties | 下载 |
10.1002/smll.201403645 | Capillary Force-Driven, Hierarchical Co-Assembly of Dandelion-Like Peptide Microstructures | 下载 |
10.1021/acsami.5b01251 | Nanoscale Piezoelectric Properties of Self-Assembled Fmoc-FF Peptide Fibrous Networks | 下载 |
10.1039/c5cc05229g | Anodic electrogenerated chemiluminescence of self-assembled peptide nanotubes in an aqueous system | 下载 |
10.1021/acs.langmuir.5b02784 | Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence | 下载 |
10.1021/acsnano.5b05936 | Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting | 下载 |
10.1021/acsnano.6b01587 | Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly | 下载 |
10.1038/ncomms13566 | Self-assembly of diphenylalanine peptide with controlled polarization for power generation | 下载 |
10.1021/acsnano.7b01662 | Diphenylalanine as a Reductionist Model for the Mechanistic Characterization of β-Amyloid Modulators | 下载 |
10.1128/AEM.71.12.7961-7973.2005 | L-selective amidase with extremely broad substrate specificity from Ochrobactrum anthropi NCIMB 40321 | 下载 |
10.1021/jm9704311 | Molecular properties and pharmacokinetic behavior of cetirizine, a zwitterionic H1-receptor antagonist | 下载 |
10.1155/2017/4562474 | Peptide Self-Assembled Nanostructures for Drug Delivery Applications | 下载 |
多肽H2N-Phe-Phe-COOH的合成步骤:
1、合成CTC树脂:称取0.41g CTC Resin(如初始取代度约为0.59mmol/g)和0.29mmol Fmoc-Phe-OH于反应器中,加入适量DCM溶解氨基酸(需要注意,此时CTC树脂体积会增大好几倍,避免DCM溶液过少),再加入0.73mmol DIPEA(Mw:129.1,d:0.740g/ml),反应2-3小时后,可不抽滤溶液,直接加入1ml的HPLC级甲醇,封端半小时。依次用DMF洗涤2次,甲醇洗涤1次,DCM洗涤一次,甲醇洗涤一次,DCM洗涤一次,DMF洗涤2次(这里使用甲醇和DCM交替洗涤,是为了更好地去除其他溶质,有利于后续反应)。得到 Fmoc-Phe-CTC Resin。结构图如下:
2、脱Fmoc:加3倍树脂体积的20%Pip/DMF溶液,鼓氮气30分钟,然后2倍树脂体积的DMF 洗涤5次。得到 H2N-Phe-CTC Resin 。(此步骤脱除Fmoc基团,茚三酮检测为蓝色,Pip为哌啶)。结构图如下:
3、缩合:取0.73mmol Fmoc-Phe-OH 氨基酸,加入到上述树脂里,加适当DMF溶解氨基酸,再依次加入1.45mmol DIPEA,0.69mmol HBTU。反应30分钟后,取小样洗涤,茚三酮检测为无色。用2倍树脂体积的DMF 洗涤3次树脂。(洗涤树脂,去掉残留溶剂,为下一步反应做准备)。得到Fmoc-Phe-Phe-CTC Resin。氨基酸:DIPEA:HBTU:树脂=3:6:2.85:1(摩尔比)。结构图如下:
4、依次循环步骤二、步骤三,依次得到
以上中间结构,均可在专肽生物多肽计算器-多肽结构计算器中,一键画出。
最后再经过步骤二得到 H2N-Phe-Phe-CTC Resin,结构如下:
5、切割:6倍树脂体积的切割液(或每1g树脂加8ml左右的切割液),摇床摇晃 2小时,过滤掉树脂,用冰无水乙醚沉淀滤液,并用冰无水乙醚洗涤沉淀物3次,最后将沉淀物放真空干燥釜中,常温干燥24小试,得到粗品H2N-Phe-Phe-COOH。结构图见产品结构图。
切割液选择:1)TFA:H2O=95%:5%
2)TFA:H2O:TIS=95%:2.5%:2.5%
3)三氟乙酸:茴香硫醚:1,2-乙二硫醇:苯酚:水=87.5%:5%:2.5%:2.5%:2.5%
(前两种适合没有容易氧化的氨基酸,例如Trp、Cys、Met。第三种适合几乎所有的序列。)
6、纯化冻干:使用液相色谱纯化,收集目标峰液体,进行冻干,获得蓬松的粉末状固体多肽。不过这时要取小样复测下纯度 是否目标纯度。
7、最后总结:
杭州专肽生物技术有限公司(ALLPEPTIDE https://www.allpeptide.com)主营定制多肽合成业务,提供各类长肽,短肽,环肽,提供各类修饰肽,如:荧光标记修饰(CY3、CY5、CY5.5、CY7、FAM、FITC、Rhodamine B、TAMRA等),功能基团修饰肽(叠氮、炔基、DBCO、DOTA、NOTA等),同位素标记肽(N15、C13),订书肽(Stapled Peptide),脂肪酸修饰肽(Pal、Myr、Ste),磷酸化修饰肽(P-Ser、P-Thr、P-Tyr),环肽(酰胺键环肽、一对或者多对二硫键环),生物素标记肽,PEG修饰肽,甲基化修饰肽等。
以上所有内容,为专肽生物原创内容,请勿发布到其他网站上。