编号: | 118574 |
中文名称: | P物质肽Substance P Methylester |
英文名: | Substance PMethylester |
CAS号: | 76260-78-1 |
单字母: | H2N-RPKPQQFFGLM-OMe |
三字母: | H2N N端氨基 -Arg精氨酸 -Pro脯氨酸 -Lys赖氨酸 -Pro脯氨酸 -Gln谷氨酰胺 -Gln谷氨酰胺 -Phe苯丙氨酸 -Phe苯丙氨酸 -Gly甘氨酸 -Leu亮氨酸 -Met甲硫氨酸 -OMeC端甲酯化修饰 |
氨基酸个数: | 11 |
分子式: | C64H99N17O14S1 |
平均分子量: | 1362.64 |
精确分子量: | 1361.73 |
等电点(PI): | - |
pH=7.0时的净电荷数: | 2.97 |
平均亲水性: | -0.2125 |
疏水性值: | -0.7 |
外观与性状: | 白色粉末状固体 |
消光系数: | - |
来源: | 人工化学合成,仅限科学研究使用,不得用于人体。 |
纯度: | 95%、98% |
盐体系: | 可选TFA、HAc、HCl或其它 |
生成周期: | 2-3周 |
储存条件: | 负80℃至负20℃ |
标签: | P物质及相关肽 |
NK-1 receptor selective agonist.
定义
物质P(SP)是十一肽,在周围和中枢神经系统中都丰富,通常与一种经典的神经递质之一,最常见的是血清素(5-HT)1共定位。
相关肽
SP属于神经肽家族,称为速激肽,具有共同的C端序列:Phe-X-Gly-Leu-Met-NH 2。三种最常见的速激肽是SP,神经激肽A(NKA)和神经激肽B(NKB)。它们的生物学作用是通过称为NK1,NK2和NK3的特定细胞表面受体介导的,其中SP是NK1受体的首选激动剂,NKA是NK2受体的首选激动剂,NKB是NK3受体的2激动剂。
Discovery
SP最初是由冯·欧拉(von Euler)和加德姆(Gaddum)于1931年发现的,是一种引起体外肠道收缩的组织提取物。在随后的几十年中,它的生物活性和组织分布得到了进一步的研究3。
结构特征
SP是具有11个残基的神经肽,序列为Arg-Pro-Lys-Pro-Gln-Glin-Phe-Gly-Leu-Met-NH 2)4。在一项研究中,将SP的C和N末端片段与母体分子在以下方面的能力进行了比较:(a)收缩分离的豚鼠回肠,(b)在大鼠中诱导唾液分泌,(c)激发单只猫背角神经元,以及(d)通过小鼠颅内注射诱导抓挠。在所有测定系统中,与七肽一样小的C末端片段都是有效的SP激动剂。包含五个或更少氨基酸的C末端片段至多仅具有弱活性。N-末端片段在分离的豚鼠回肠上完全没有活性。然而,在大鼠唾液分泌和中枢神经系统分析中,N末端片段具有弱的SP样活性5。获得的结果表明,尽管SP的羧基末端对于肽支气管活性是必不可少的,但是氨基末端肽的丢失(最多四个残基)实际上增强了对肽的支气管收缩剂反应。这种增强的一部分似乎是由SP和SP5-11的酶促降解差异引起的。数据表明,二肽基氨基肽酶对SP的切割可以增强其生物活性6。SP类似物:Senktide(琥珀酰-[Asp6,Me-Phe8] SP-(6-11))是NK-3(SP-N)受体的选择性类似物,效力比SP高20-100倍,约为1000倍比为NK-1(SP-P)受体选择性类似物,其驻留在肌肉细胞更有效的7。鞘内注射后研究了5种SP类似物对神经激肽(NK)1受体激动剂如SP,藻蛋白和(p-Glu6,Pro9)-SP(6-11)(肽)诱导的舔,咬和scratch痒反应的影响。在小鼠中。肽引起类似SP的行为反应,其效力是D-Pro9类似物D-肽的25倍。(D-Arg1,D-Pro2,4,D-Phe7,D-His9,Leu11)-SP的剂量低于(D-Phe7,D-His9,Leu11)-SP的肽诱导的应答(6 -11)。相反,(D-Arg1,D-Pro2,4,D-Phe7,D-His9)-SP(0.5-1.0 nmol)和(D-Phe7,D-His9)-SP(6-11)(0.5- 2.0 nmol)仅抑制SP诱导的行为反应,而不抑制physalaemin或肽诱导的反应。8。P物质[D-Arg1,D-Phe5,D-Trp7,9,Leu11] SP(SpD)和[Arg6,D-Trp7,9,NmePhe8]类似物P可以抑制神经肽刺激的Ca2 +动员,酪氨酸磷酸化和ERK激活。至关重要的是,SpD和[Arg6,D-Trp7,9,NmePhe8] SP在体内和体外均抑制SCLC细胞生长并刺激SCLC细胞凋亡。SP类似物最初被表征为“广谱神经肽拮抗剂” 9。
作用方式
SP受体是一种G蛋白偶联受体,在许多方面与精神病学中其他经过充分研究的受体相似,特别是单胺受体2。SP与其受体的相互作用激活了Gq,Gq又激活了磷脂酶C,将磷脂酰肌醇双磷酸酯分解为肌醇三磷酸酯(IP3)和二酰基甘油(DAG)。IP3作用于肌质网中的特定受体以释放Ca2 +的细胞内储存,而DAG通过蛋白激酶C作用以打开质膜中的L型钙通道。细胞内[Ca2 +]的升高诱导组织反应。与SP所见的一系列动作一样,存在多种治疗可能性10。
功能
在中枢神经系统中,SP与情绪障碍,焦虑,压力,增强,神经发生,神经毒性和疼痛的调节有关。在消化道,SP,以及一些其他速激肽,是神经递质,调节运动活动,离子和液体的分泌,以及血管功能11,12。
参考
1. Argyropoulos SV, Nutt DJ (2000). Substance P antagonists: novel agents in the treatment of depression. Expert Opin Investig Drugs, 9(8):1871-1875.
2. Book: Substance P and Related Tachykinins. Chapter 13: Neuropsychopharmacology: By Nadia MJ, Kramer MS.
3. Senba E, Tohyama M (1985). Origin and fine structure of substance P-containing nerve terminals in the facial nucleus of the rat:an immunohistochemical study. Exp Brain Res., 57(3):537-546.
4. Seidel MF, Tsalik J, Vetter H, Müller W (2007). Substance P in Rheumatic Diseases. Current Rheumatology Reviews, 3:17-30.
5. Piercey MF, Dobry PJ, Einspahr FJ, Schroeder LA, Masiques N (1982) Use of substance P fragments to differentiate substance P receptors of different tissues. Regulatory Peptides, 3(5-6):337-349.
6. Shore SA, Drazen JM (1988). Airway responses to substance P and substance P fragments in the guinea pig. Pulm Pharmacol., 1(3):113-118.
7. Hanani M, Chorev M, Gilon C, Selinger Z (1988). The actions of receptor-selective substance P analogs on myenteric neurons: an electrophysiological investigation. European journal of pharmacology, 153(2-3):247-253.
8. Sakurada T, Yamada T, Tan-no K, Manome Y, Sakurada S, Kisara K, Ohba M (1991). Differential effects of substance P analogs on neurokinin 1 receptor agonists in the mouse spinal cord. J Pharmacol Exp Ther., 259:205-210
9. MacKinnon AC, Waters C, Jodrell D, Haslett C, Sethi T (2001). Bombesin and Substance P Analogues Differentially Regulate G-protein Coupling to the Bombesin Receptor. J. Biol. Chem., 276(30):28083-28091..
10. Khawaja AM, Rogers DF (1996). Tachykinins: receptor to effector. Int J Biochem Cell Biol., 28(7):721-738.
11. Leeman SE, Mroz EA (1974). Substance P. Life Sci., 15(12):2033–2044.
12. Wiesenfeld-Hallin Z, Xu XJ (1993). The differential roles of substance P and neurokinin A in spinal cord hyperexcitability and neurogenic inflammation. Regul Pept., 46(1-2):165-173
DOI | 名称 | |
---|---|---|
10.1016/j.ejphar.2006.08.021 | MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist | 下载 |
10.1111/j.1749-6632.1991.tb33105.x | Neurokinin agonists and antagonists | 下载 |
10.1016/0014-2999(83)90052-3 | Tissue selectivity of substance P alkyl esters: suggesting multiple receptors | 下载 |
10.1021/ac011203o | A calibration method that simplifies and improves accurate determination of peptide molecular masses by MALDI-TOF MS | 下载 |
多肽H2N-Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-OMe的合成步骤:
1、合成CTC树脂:称取1.37g CTC Resin(如初始取代度约为0.58mmol/g)和0.95mmol Fmoc-Met-OH于反应器中,加入适量DCM溶解氨基酸(需要注意,此时CTC树脂体积会增大好几倍,避免DCM溶液过少),再加入2.38mmol DIPEA(Mw:129.1,d:0.740g/ml),反应2-3小时后,可不抽滤溶液,直接加入1ml的HPLC级甲醇,封端半小时。依次用DMF洗涤2次,甲醇洗涤1次,DCM洗涤一次,甲醇洗涤一次,DCM洗涤一次,DMF洗涤2次(这里使用甲醇和DCM交替洗涤,是为了更好地去除其他溶质,有利于后续反应)。得到 Fmoc-Met-CTC Resin。结构图如下:
2、脱Fmoc:加3倍树脂体积的20%Pip/DMF溶液,鼓氮气30分钟,然后2倍树脂体积的DMF 洗涤5次。得到 H2N-Met-CTC Resin 。(此步骤脱除Fmoc基团,茚三酮检测为蓝色,Pip为哌啶)。结构图如下:
3、缩合:取2.38mmol Fmoc-Leu-OH 氨基酸,加入到上述树脂里,加适当DMF溶解氨基酸,再依次加入4.77mmol DIPEA,2.26mmol HBTU。反应30分钟后,取小样洗涤,茚三酮检测为无色。用2倍树脂体积的DMF 洗涤3次树脂。(洗涤树脂,去掉残留溶剂,为下一步反应做准备)。得到Fmoc-Leu-Met-CTC Resin。氨基酸:DIPEA:HBTU:树脂=3:6:2.85:1(摩尔比)。结构图如下:
4、依次循环步骤二、步骤三,依次得到
H2N-Leu-Met-CTC Resin
Fmoc-Gly-Leu-Met-CTC Resin
H2N-Gly-Leu-Met-CTC Resin
Fmoc-Phe-Gly-Leu-Met-CTC Resin
H2N-Phe-Gly-Leu-Met-CTC Resin
Fmoc-Phe-Phe-Gly-Leu-Met-CTC Resin
H2N-Phe-Phe-Gly-Leu-Met-CTC Resin
Fmoc-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
H2N-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
Fmoc-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
H2N-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
Fmoc-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
H2N-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
Fmoc-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
H2N-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
Fmoc-Pro-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
H2N-Pro-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
Fmoc-Arg(Pbf)-Pro-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin
以上中间结构,均可在专肽生物多肽计算器-多肽结构计算器中,一键画出。
最后再经过步骤二得到 H2N-Arg(Pbf)-Pro-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin,结构如下:
5、N端临时Boc保护:加适当DMF到树脂中,再依次加入9.54mmol DIPEA,4.77mmol Boc酸酐溶液,鼓氮气反应30分钟。取小样茚三酮检测为无色。Boc酸酐:DIPEA:树脂=6:12:1(摩尔比)。用2倍树脂体积的DMF 洗涤3次树脂(洗涤树脂,去掉残留溶剂,为下一步反应做准备)。 得到 Boc-Arg(Pbf)-Pro-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin。结构如下:
6、全保护切割:配置0.5%TFA/DCM溶液,溶液体积约为树脂体积的3倍。再次用DCM洗涤树脂2遍(去除残留DMF),后将配置好的溶液倒入到反应器中,反应30分钟。抽滤树脂,收集滤液(此时多肽已经从树脂上分离,存在于滤液中)。多肽序列为 Boc-Arg(Pbf)-Pro-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-CTC Resin。 在滤液中添加DIEPA,调PH至7-8。用饱和NaHCO3洗涤滤液,分离出DCM层溶液。可适当旋蒸DCM层溶液,减少有机溶剂。再次加入1或2倍体积的乙酸乙酯,用稀HCl溶液调PH至微酸性,将多肽从DCM层萃取到乙酸乙酯层。用饱和NaCl洗涤2次乙酸乙酯层。用无水硫酸镁吸收乙酸乙酯层的水分。通过减压旋蒸,直接将乙酸乙酯完全旋蒸掉,得到晶体状固体多肽,用于下一步C端反应。或通过减压旋蒸保留适量乙酸乙酯的溶液体积,加入冰乙醚析出 多肽,然后对多肽进行烘干操作即可用于下一步C端反应。Boc-Arg(Pbf)-Pro-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-COOH的结构图如下。
7、甲醇反应连接:在上述树脂中,加入适当DMF后,再加入2.38mmol 甲醇到树脂中,再加入4.77mmol DIPEA、2.26mmol HBTU,鼓氮气反应30分钟。用2倍树脂体积的DMF 洗涤3次树脂(洗涤树脂,去掉残留溶剂,为下一步反应做准备)。 得到 Boc-Arg(Pbf)-Pro-Lys(Boc)-Pro-Gln(Trt)-Gln(Trt)-Phe-Phe-Gly-Leu-Met-OMe。 结构如下:
8、切割:6倍树脂体积的切割液(或每1g树脂加8ml左右的切割液),摇床摇晃 2小时,过滤掉树脂,用冰无水乙醚沉淀滤液,并用冰无水乙醚洗涤沉淀物3次,最后将沉淀物放真空干燥釜中,常温干燥24小试,得到粗品H2N-Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-OMe。结构图见产品结构图。
切割液选择:1)TFA:H2O=95%:5%
2)TFA:H2O:TIS=95%:2.5%:2.5%
3)三氟乙酸:茴香硫醚:1,2-乙二硫醇:苯酚:水=87.5%:5%:2.5%:2.5%:2.5%
(前两种适合没有容易氧化的氨基酸,例如Trp、Cys、Met。第三种适合几乎所有的序列。)
9、纯化冻干:使用液相色谱纯化,收集目标峰液体,进行冻干,获得蓬松的粉末状固体多肽。不过这时要取小样复测下纯度 是否目标纯度。
10、最后总结:
杭州专肽生物技术有限公司(ALLPEPTIDE https://www.allpeptide.com)主营定制多肽合成业务,提供各类长肽,短肽,环肽,提供各类修饰肽,如:荧光标记修饰(CY3、CY5、CY5.5、CY7、FAM、FITC、Rhodamine B、TAMRA等),功能基团修饰肽(叠氮、炔基、DBCO、DOTA、NOTA等),同位素标记肽(N15、C13),订书肽(Stapled Peptide),脂肪酸修饰肽(Pal、Myr、Ste),磷酸化修饰肽(P-Ser、P-Thr、P-Tyr),环肽(酰胺键环肽、一对或者多对二硫键环),生物素标记肽,PEG修饰肽,甲基化修饰肽等。
以上所有内容,为专肽生物原创内容,请勿发布到其他网站上。