2012.10.16,我院孙斐教授和王均教授研究组在Nanoscale上发表文章, online

时间:2021-04-12 21:30:01学院:生命科学学院学校:中国科学技术大学
2012.10.16,我院孙斐教授和王均教授研究组在Nanoscale上发表题为“Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells”文章, online
 

作者:刘志民、李文清、王 峰、孙春阳、王 露、王 均、孙 斐

DOI: 10.1039/C2NR31355C

 

Abstract:

While the immunogenicity and cytotoxicity of gold nanoparticles (AuNPs) are noted by many researchers, the mechanisms by which AuNPs exert these effects are poorly understood. In this study, we investigated the effects of polyethylene glycolylated AuNPs (PEG@AuNPs) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin-6 (IL-6) production and the associated molecular mechanism in RAW264.7 cells. The results showed that PEG@AuNPs were internalized more quickly by LPS-activated RAW264.7 cells than unstimulated cells, and they reached saturation within 24 hours. PEG@AuNPs enhanced LPS-induced production of NO and IL-6 and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells, partially by activating p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor-kappaB pathways. In addition, the p38 MAPK inhibitor SB203580 attenuated PEG@AuNP-enhanced LPS-induced NO production and iNOS expression. Overproduction of NO and IL-6 is known to be closely correlated with the pathology of many diseases and inflammations. Thus, it is speculated that the highly biocompatible gold nanoparticles can induce immunotoxicity due to their potency to stimulate macrophages to release aberrant or excessive pro-inflammatory mediators.

 

 



版权与免责声明:本网页的内容由收集互联网上公开发布的信息整理获得。目的在于传递信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:sales@allpeptide.com

返回首页 浙公网安备 33010602009704号;浙ICP备18001318号